Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Sumy is working in geometry class and is given figure ABCD in the coordinate plane to reflect. The coordinates of point D are [tex]$(a, b)$[/tex] and she reflects the figure over the line [tex]$y = x$[/tex]. What are the coordinates of the image [tex][tex]$D^{\prime}$[/tex][/tex]?

A. [tex]$(a, -b)$[/tex]
B. [tex]$(b, a)$[/tex]
C. [tex][tex]$(-a, b)$[/tex][/tex]
D. [tex]$(-b, -a)$[/tex]


Sagot :

To reflect a point over the line [tex]\( y = x \)[/tex], you need to swap the coordinates of the point.

Given the coordinates of point [tex]\( D \)[/tex] as [tex]\( (a, b) \)[/tex]:

1. Reflecting over the line [tex]\( y = x \)[/tex] involves swapping the [tex]\( x \)[/tex]-coordinate with the [tex]\( y \)[/tex]-coordinate.
2. Therefore, for point [tex]\( D \)[/tex] with coordinates [tex]\( (a, b) \)[/tex], the reflected image [tex]\( D' \)[/tex] will have its coordinates swapped to [tex]\( (b, a) \)[/tex].

So, the coordinates of the image [tex]\( D' \)[/tex] after reflecting point [tex]\( D \)[/tex] over the line [tex]\( y = x \)[/tex] are [tex]\( (b, a) \)[/tex].

Thus, the correct answer is:

[tex]\[ (b, a) \][/tex]