Answered

At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Write the equation of the quadratic function in vertex and standard form whose vertex is at [tex]\((-1,6)\)[/tex] and that passes through [tex]\((2,24)\)[/tex].

Sagot :

To find the equation of the quadratic function in both vertex and standard form, given the vertex and a point it passes through, we follow these steps:

1. Vertex Form of the Quadratic Function:

The vertex form of a quadratic function is given by:
[tex]\[ y = a(x - h)^2 + k \][/tex]
Here, [tex]\((h, k)\)[/tex] is the vertex of the parabola. Given the vertex [tex]\((-1, 6)\)[/tex], we can substitute [tex]\(h = -1\)[/tex] and [tex]\(k = 6\)[/tex] into the vertex form:
[tex]\[ y = a(x - (-1))^2 + 6 \][/tex]

Simplifying the expression inside the parentheses, we get:
[tex]\[ y = a(x + 1)^2 + 6 \][/tex]

2. Determine the Value of [tex]\(a\)[/tex]:

We are given a point [tex]\((2, 24)\)[/tex] that the function passes through. Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 24\)[/tex] into the equation:
[tex]\[ 24 = a(2 + 1)^2 + 6 \][/tex]
Solve for [tex]\(a\)[/tex]:
[tex]\[ 24 = a(3)^2 + 6 \][/tex]
[tex]\[ 24 = 9a + 6 \][/tex]
Subtract 6 from both sides:
[tex]\[ 18 = 9a \][/tex]
Divide by 9:
[tex]\[ a = 2 \][/tex]

3. Write the Vertex Form:

Substitute [tex]\(a = 2\)[/tex] back into the vertex form:
[tex]\[ y = 2(x + 1)^2 + 6 \][/tex]

4. Convert to Standard Form:

To find the standard form [tex]\(y = ax^2 + bx + c\)[/tex], expand the vertex form:
[tex]\[ y = 2(x + 1)^2 + 6 \][/tex]
First, expand [tex]\((x + 1)^2\)[/tex]:
[tex]\[ (x + 1)^2 = x^2 + 2x + 1 \][/tex]
Substitute back into the equation:
[tex]\[ y = 2(x^2 + 2x + 1) + 6 \][/tex]
Distribute the 2:
[tex]\[ y = 2x^2 + 4x + 2 + 6 \][/tex]
Combine like terms:
[tex]\[ y = 2x^2 + 4x + 8 \][/tex]

Thus, the equations of the quadratic function are:
- Vertex form: [tex]\(\boxed{y = 2(x + 1)^2 + 6}\)[/tex]
- Standard form: [tex]\(\boxed{y = 2x^2 + 4x + 8}\)[/tex]