At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the given indefinite integral [tex]\(\int \frac{4 x^7 + 8 x^5}{x^4} \, dx\)[/tex], we will follow these steps:
1. Simplify the integrand:
[tex]\[ \frac{4 x^7 + 8 x^5}{x^4} \][/tex]
We can simplify the fraction by dividing each term in the numerator by [tex]\(x^4\)[/tex]:
[tex]\[ \frac{4 x^7}{x^4} + \frac{8 x^5}{x^4} = 4 x^{7-4} + 8 x^{5-4} = 4 x^3 + 8 x \][/tex]
2. Rewrite the integral with the simplified integrand:
[tex]\[ \int (4 x^3 + 8 x) \, dx \][/tex]
3. Integrate each term separately:
- The integral of [tex]\(4 x^3\)[/tex] with respect to [tex]\(x\)[/tex] is:
[tex]\[ \int 4 x^3 \, dx = 4 \cdot \frac{x^{3+1}}{3+1} = 4 \cdot \frac{x^4}{4} = x^4 \][/tex]
- The integral of [tex]\(8 x\)[/tex] with respect to [tex]\(x\)[/tex] is:
[tex]\[ \int 8 x \, dx = 8 \cdot \frac{x^{1+1}}{1+1} = 8 \cdot \frac{x^2}{2} = 4 x^2 \][/tex]
4. Combine the results and include the constant of integration:
[tex]\[ \int (4 x^3 + 8 x) \, dx = x^4 + 4 x^2 + C \][/tex]
Thus, the indefinite integral is:
[tex]\[ \int \frac{4 x^7 + 8 x^5}{x^4} \, dx = x^4 + 4 x^2 + C \][/tex]
1. Simplify the integrand:
[tex]\[ \frac{4 x^7 + 8 x^5}{x^4} \][/tex]
We can simplify the fraction by dividing each term in the numerator by [tex]\(x^4\)[/tex]:
[tex]\[ \frac{4 x^7}{x^4} + \frac{8 x^5}{x^4} = 4 x^{7-4} + 8 x^{5-4} = 4 x^3 + 8 x \][/tex]
2. Rewrite the integral with the simplified integrand:
[tex]\[ \int (4 x^3 + 8 x) \, dx \][/tex]
3. Integrate each term separately:
- The integral of [tex]\(4 x^3\)[/tex] with respect to [tex]\(x\)[/tex] is:
[tex]\[ \int 4 x^3 \, dx = 4 \cdot \frac{x^{3+1}}{3+1} = 4 \cdot \frac{x^4}{4} = x^4 \][/tex]
- The integral of [tex]\(8 x\)[/tex] with respect to [tex]\(x\)[/tex] is:
[tex]\[ \int 8 x \, dx = 8 \cdot \frac{x^{1+1}}{1+1} = 8 \cdot \frac{x^2}{2} = 4 x^2 \][/tex]
4. Combine the results and include the constant of integration:
[tex]\[ \int (4 x^3 + 8 x) \, dx = x^4 + 4 x^2 + C \][/tex]
Thus, the indefinite integral is:
[tex]\[ \int \frac{4 x^7 + 8 x^5}{x^4} \, dx = x^4 + 4 x^2 + C \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.