Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Given: [tex]f(x) = -\frac{1}{7} \sqrt{16 - x^2}[/tex], find [tex]f^{-1}(x)[/tex].

Then, state whether [tex]f^{-1}(x)[/tex] is a function.


Sagot :

To find the inverse of the function [tex]\( f(x) = -\frac{1}{7} \sqrt{16 - x^2} \)[/tex] and determine whether the inverse is itself a function, follow these steps:

1. Start with the equation of the function:
[tex]\[ f(x) = -\frac{1}{7} \sqrt{16 - x^2} \][/tex]

2. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{7} \sqrt{16 - x^2} \][/tex]

3. Isolate the square root term:
Negate both sides of the equation to remove the negative sign and multiply both sides by 7 to clear the fraction.
[tex]\[ -y = \frac{1}{7} \sqrt{16 - x^2} \][/tex]
[tex]\[ -7y = \sqrt{16 - x^2} \][/tex]

4. Square both sides to eliminate the square root:
[tex]\[ (-7y)^2 = 16 - x^2 \][/tex]
[tex]\[ 49y^2 = 16 - x^2 \][/tex]

5. Rearrange the equation to solve for [tex]\( x^2 \)[/tex]:
Add [tex]\( x^2 \)[/tex] to both sides of the equation and then subtract [tex]\( 49y^2 \)[/tex] from both sides:
[tex]\[ 16 = x^2 + 49y^2 \][/tex]
[tex]\[ x^2 = 16 - 49y^2 \][/tex]

6. Solve for [tex]\( x \)[/tex]:
Take the square root of both sides:
[tex]\[ x = \pm \sqrt{16 - 49y^2} \][/tex]

7. Determine the inverse function:
At this point, we see that there are potentially two solutions for [tex]\( x \)[/tex] given [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt{16 - 49y^2} \quad \text{and} \quad x = -\sqrt{16 - 49y^2} \][/tex]
Since there are two solutions, the inverse is not a single-valued function. Therefore, the inverse of [tex]\( f(x) \)[/tex] is not a function because the original function does not pass the horizontal line test (it's not one-to-one).

To summarize:

- The expression obtained for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] are two-valued:
[tex]\[ x = \sqrt{16 - 49y^2} \quad \text{and} \quad x = -\sqrt{16 - 49y^2} \][/tex]

- Since there are two possible values for [tex]\( x \)[/tex] for each [tex]\( y \)[/tex], the result shows that [tex]\( f^{-1}(x) \)[/tex] is not a function.

Thus, the inverse [tex]\( f^{-1}(x) \)[/tex] does not exist in the traditional sense as a function.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.