Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the inverse of the function [tex]\( f(x) = -\frac{1}{7} \sqrt{16 - x^2} \)[/tex] and determine whether the inverse is itself a function, follow these steps:
1. Start with the equation of the function:
[tex]\[ f(x) = -\frac{1}{7} \sqrt{16 - x^2} \][/tex]
2. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{7} \sqrt{16 - x^2} \][/tex]
3. Isolate the square root term:
Negate both sides of the equation to remove the negative sign and multiply both sides by 7 to clear the fraction.
[tex]\[ -y = \frac{1}{7} \sqrt{16 - x^2} \][/tex]
[tex]\[ -7y = \sqrt{16 - x^2} \][/tex]
4. Square both sides to eliminate the square root:
[tex]\[ (-7y)^2 = 16 - x^2 \][/tex]
[tex]\[ 49y^2 = 16 - x^2 \][/tex]
5. Rearrange the equation to solve for [tex]\( x^2 \)[/tex]:
Add [tex]\( x^2 \)[/tex] to both sides of the equation and then subtract [tex]\( 49y^2 \)[/tex] from both sides:
[tex]\[ 16 = x^2 + 49y^2 \][/tex]
[tex]\[ x^2 = 16 - 49y^2 \][/tex]
6. Solve for [tex]\( x \)[/tex]:
Take the square root of both sides:
[tex]\[ x = \pm \sqrt{16 - 49y^2} \][/tex]
7. Determine the inverse function:
At this point, we see that there are potentially two solutions for [tex]\( x \)[/tex] given [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt{16 - 49y^2} \quad \text{and} \quad x = -\sqrt{16 - 49y^2} \][/tex]
Since there are two solutions, the inverse is not a single-valued function. Therefore, the inverse of [tex]\( f(x) \)[/tex] is not a function because the original function does not pass the horizontal line test (it's not one-to-one).
To summarize:
- The expression obtained for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] are two-valued:
[tex]\[ x = \sqrt{16 - 49y^2} \quad \text{and} \quad x = -\sqrt{16 - 49y^2} \][/tex]
- Since there are two possible values for [tex]\( x \)[/tex] for each [tex]\( y \)[/tex], the result shows that [tex]\( f^{-1}(x) \)[/tex] is not a function.
Thus, the inverse [tex]\( f^{-1}(x) \)[/tex] does not exist in the traditional sense as a function.
1. Start with the equation of the function:
[tex]\[ f(x) = -\frac{1}{7} \sqrt{16 - x^2} \][/tex]
2. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{7} \sqrt{16 - x^2} \][/tex]
3. Isolate the square root term:
Negate both sides of the equation to remove the negative sign and multiply both sides by 7 to clear the fraction.
[tex]\[ -y = \frac{1}{7} \sqrt{16 - x^2} \][/tex]
[tex]\[ -7y = \sqrt{16 - x^2} \][/tex]
4. Square both sides to eliminate the square root:
[tex]\[ (-7y)^2 = 16 - x^2 \][/tex]
[tex]\[ 49y^2 = 16 - x^2 \][/tex]
5. Rearrange the equation to solve for [tex]\( x^2 \)[/tex]:
Add [tex]\( x^2 \)[/tex] to both sides of the equation and then subtract [tex]\( 49y^2 \)[/tex] from both sides:
[tex]\[ 16 = x^2 + 49y^2 \][/tex]
[tex]\[ x^2 = 16 - 49y^2 \][/tex]
6. Solve for [tex]\( x \)[/tex]:
Take the square root of both sides:
[tex]\[ x = \pm \sqrt{16 - 49y^2} \][/tex]
7. Determine the inverse function:
At this point, we see that there are potentially two solutions for [tex]\( x \)[/tex] given [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt{16 - 49y^2} \quad \text{and} \quad x = -\sqrt{16 - 49y^2} \][/tex]
Since there are two solutions, the inverse is not a single-valued function. Therefore, the inverse of [tex]\( f(x) \)[/tex] is not a function because the original function does not pass the horizontal line test (it's not one-to-one).
To summarize:
- The expression obtained for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] are two-valued:
[tex]\[ x = \sqrt{16 - 49y^2} \quad \text{and} \quad x = -\sqrt{16 - 49y^2} \][/tex]
- Since there are two possible values for [tex]\( x \)[/tex] for each [tex]\( y \)[/tex], the result shows that [tex]\( f^{-1}(x) \)[/tex] is not a function.
Thus, the inverse [tex]\( f^{-1}(x) \)[/tex] does not exist in the traditional sense as a function.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.