Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the point [tex]\( P \)[/tex] on the graph of the function [tex]\( y = \sqrt{x} \)[/tex] that is closest to the point [tex]\( (3, 0) \)[/tex], we need to minimize the distance between any point on the curve [tex]\( (x, \sqrt{x}) \)[/tex] and the point [tex]\( (3, 0) \)[/tex].
Let's denote the distance between a point [tex]\( (x, \sqrt{x}) \)[/tex] on the curve and the point [tex]\( (3, 0) \)[/tex] as [tex]\( D \)[/tex].
First, we write the distance formula [tex]\( D \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \][/tex]
Substituting [tex]\( (x_1, y_1) = (x, \sqrt{x}) \)[/tex] and [tex]\( (x_2, y_2) = (3, 0) \)[/tex], we get:
[tex]\[ D = \sqrt{(x - 3)^2 + (\sqrt{x} - 0)^2} \][/tex]
Simplify the expression:
[tex]\[ D = \sqrt{(x - 3)^2 + (\sqrt{x})^2} \][/tex]
Since [tex]\((\sqrt{x})^2 = x\)[/tex], we can rewrite [tex]\( D \)[/tex] as:
[tex]\[ D = \sqrt{(x - 3)^2 + x} \][/tex]
To find the minimum distance, we need to find the [tex]\( x \)[/tex] value that minimizes this distance function. Through optimization techniques and calculations, the [tex]\( x \)[/tex]-coordinate of point [tex]\( P \)[/tex] is found to be:
[tex]\[ x = 2.4999999114637803 \][/tex]
Therefore, the [tex]\( x \)[/tex]-coordinate of the point [tex]\( P \)[/tex] on the graph of [tex]\( y = \sqrt{x} \)[/tex] that is closest to the point [tex]\( (3, 0) \)[/tex] is approximately:
[tex]\[ x \approx 2.5 \][/tex]
Let's denote the distance between a point [tex]\( (x, \sqrt{x}) \)[/tex] on the curve and the point [tex]\( (3, 0) \)[/tex] as [tex]\( D \)[/tex].
First, we write the distance formula [tex]\( D \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \][/tex]
Substituting [tex]\( (x_1, y_1) = (x, \sqrt{x}) \)[/tex] and [tex]\( (x_2, y_2) = (3, 0) \)[/tex], we get:
[tex]\[ D = \sqrt{(x - 3)^2 + (\sqrt{x} - 0)^2} \][/tex]
Simplify the expression:
[tex]\[ D = \sqrt{(x - 3)^2 + (\sqrt{x})^2} \][/tex]
Since [tex]\((\sqrt{x})^2 = x\)[/tex], we can rewrite [tex]\( D \)[/tex] as:
[tex]\[ D = \sqrt{(x - 3)^2 + x} \][/tex]
To find the minimum distance, we need to find the [tex]\( x \)[/tex] value that minimizes this distance function. Through optimization techniques and calculations, the [tex]\( x \)[/tex]-coordinate of point [tex]\( P \)[/tex] is found to be:
[tex]\[ x = 2.4999999114637803 \][/tex]
Therefore, the [tex]\( x \)[/tex]-coordinate of the point [tex]\( P \)[/tex] on the graph of [tex]\( y = \sqrt{x} \)[/tex] that is closest to the point [tex]\( (3, 0) \)[/tex] is approximately:
[tex]\[ x \approx 2.5 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.