Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To understand the relationship between the graphs of the functions [tex]\( f(x) = \sqrt{x} \)[/tex] and [tex]\( g(x) = \sqrt{x-1} \)[/tex], we need to compare them carefully.
### Relationship Between [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]
Given:
[tex]\[ f(x) = \sqrt{x} \][/tex]
[tex]\[ g(x) = \sqrt{x-1} \][/tex]
The function [tex]\( g(x) \)[/tex] is derived by substituting [tex]\( x-1 \)[/tex] in place of [tex]\( x \)[/tex] in the function [tex]\( f(x) \)[/tex]. This substitution implies a horizontal shift in the graph of the function. Specifically:
- The graph of [tex]\( g(x) \)[/tex] is shifted 1 unit to the right of the graph of [tex]\( f(x) \)[/tex].
### Finding the Corresponding Point
We are given that [tex]\( (1,1) \)[/tex] is a point on the graph of [tex]\( f(x) \)[/tex]. This means:
[tex]\[ f(1) = \sqrt{1} = 1 \][/tex]
To find the corresponding point on the graph of [tex]\( g(x) \)[/tex], we use the fact that the graph of [tex]\( g(x) \)[/tex] is the horizontal right shift of [tex]\( f(x) \)[/tex] by 1 unit.
So if [tex]\( (1,1) \)[/tex] is a point on [tex]\( f(x) \)[/tex]:
- We increase the x-coordinate by 1 to find the corresponding x-coordinate on [tex]\( g(x) \)[/tex].
Therefore, the corresponding x-value for the point on [tex]\( g(x) \)[/tex] is:
[tex]\[ x_{g} = x_{f} + 1 = 1 + 1 = 2 \][/tex]
The y-coordinate stays the same because the function values at these corresponding x-values are equivalent due to the nature of the shift:
[tex]\[ y_{f} = y_{g} \][/tex]
[tex]\[ y_{g} = 1 \][/tex]
So the corresponding point on [tex]\( g(x) \)[/tex] will be [tex]\( (x_{g}, y_{g}) \)[/tex]:
[tex]\[ (2, 1) \][/tex]
### Conclusion
When [tex]\( (1,1) \)[/tex] is a point on the graph of [tex]\( f(x) \)[/tex], the corresponding point on the graph of [tex]\( g(x) \)[/tex] is:
[tex]\[ (2, 1) \][/tex]
So, the blank spaces should be filled as follows:
If [tex]\( (1,1) \)[/tex] is a point of [tex]\( f(x) \)[/tex], then [tex]\( (2, 1) \)[/tex] is the corresponding point of [tex]\( g(x) \)[/tex].
### Relationship Between [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]
Given:
[tex]\[ f(x) = \sqrt{x} \][/tex]
[tex]\[ g(x) = \sqrt{x-1} \][/tex]
The function [tex]\( g(x) \)[/tex] is derived by substituting [tex]\( x-1 \)[/tex] in place of [tex]\( x \)[/tex] in the function [tex]\( f(x) \)[/tex]. This substitution implies a horizontal shift in the graph of the function. Specifically:
- The graph of [tex]\( g(x) \)[/tex] is shifted 1 unit to the right of the graph of [tex]\( f(x) \)[/tex].
### Finding the Corresponding Point
We are given that [tex]\( (1,1) \)[/tex] is a point on the graph of [tex]\( f(x) \)[/tex]. This means:
[tex]\[ f(1) = \sqrt{1} = 1 \][/tex]
To find the corresponding point on the graph of [tex]\( g(x) \)[/tex], we use the fact that the graph of [tex]\( g(x) \)[/tex] is the horizontal right shift of [tex]\( f(x) \)[/tex] by 1 unit.
So if [tex]\( (1,1) \)[/tex] is a point on [tex]\( f(x) \)[/tex]:
- We increase the x-coordinate by 1 to find the corresponding x-coordinate on [tex]\( g(x) \)[/tex].
Therefore, the corresponding x-value for the point on [tex]\( g(x) \)[/tex] is:
[tex]\[ x_{g} = x_{f} + 1 = 1 + 1 = 2 \][/tex]
The y-coordinate stays the same because the function values at these corresponding x-values are equivalent due to the nature of the shift:
[tex]\[ y_{f} = y_{g} \][/tex]
[tex]\[ y_{g} = 1 \][/tex]
So the corresponding point on [tex]\( g(x) \)[/tex] will be [tex]\( (x_{g}, y_{g}) \)[/tex]:
[tex]\[ (2, 1) \][/tex]
### Conclusion
When [tex]\( (1,1) \)[/tex] is a point on the graph of [tex]\( f(x) \)[/tex], the corresponding point on the graph of [tex]\( g(x) \)[/tex] is:
[tex]\[ (2, 1) \][/tex]
So, the blank spaces should be filled as follows:
If [tex]\( (1,1) \)[/tex] is a point of [tex]\( f(x) \)[/tex], then [tex]\( (2, 1) \)[/tex] is the corresponding point of [tex]\( g(x) \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.