At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve this problem step-by-step.
1. Define the Problem:
- Let's denote one of the numbers as [tex]\( x \)[/tex].
- Since the sum of the two numbers is 48, the other number is [tex]\( 48 - x \)[/tex].
2. Write the Objective Function:
- The product [tex]\( P \)[/tex] of these two numbers is given by:
[tex]\[ P = x \cdot (48 - x) \][/tex]
Which simplifies to:
[tex]\[ P = 48x - x^2 \][/tex]
3. Determine the Interval:
- Since we are dealing with nonnegative real numbers, [tex]\( x \)[/tex] must satisfy:
[tex]\[ 0 \leq x \leq 48 \][/tex]
Therefore, the interval of interest for [tex]\( x \)[/tex] is [tex]\( [0, 48] \)[/tex].
4. Find the Maximum Product:
- The function [tex]\( P = 48x - x^2 \)[/tex] is a quadratic function in the form [tex]\( P = -x^2 + 48x \)[/tex].
- The maximum value of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] occurs at the vertex, which is given by [tex]\( x = -\frac{b}{2a} \)[/tex].
- Here, [tex]\( a = -1 \)[/tex] and [tex]\( b = 48 \)[/tex], so the vertex is at:
[tex]\[ x = -\frac{48}{2 \cdot -1} = 24 \][/tex]
5. Conclusion:
- The value of [tex]\( x \)[/tex] that maximizes the product is 24.
- The corresponding other number is [tex]\( 48 - 24 = 24 \)[/tex].
Therefore, the two nonnegative real numbers that sum to 48 and have the largest possible product are:
[tex]\[ 24, 24 \][/tex]
In summary:
- The objective function in terms of [tex]\( x \)[/tex] is [tex]\( P = 48x - x^2 \)[/tex].
- The interval of interest is [tex]\([0, 48]\)[/tex].
- The numbers that have the largest possible product are [tex]\( 24 \)[/tex] and [tex]\( 24 \)[/tex].
1. Define the Problem:
- Let's denote one of the numbers as [tex]\( x \)[/tex].
- Since the sum of the two numbers is 48, the other number is [tex]\( 48 - x \)[/tex].
2. Write the Objective Function:
- The product [tex]\( P \)[/tex] of these two numbers is given by:
[tex]\[ P = x \cdot (48 - x) \][/tex]
Which simplifies to:
[tex]\[ P = 48x - x^2 \][/tex]
3. Determine the Interval:
- Since we are dealing with nonnegative real numbers, [tex]\( x \)[/tex] must satisfy:
[tex]\[ 0 \leq x \leq 48 \][/tex]
Therefore, the interval of interest for [tex]\( x \)[/tex] is [tex]\( [0, 48] \)[/tex].
4. Find the Maximum Product:
- The function [tex]\( P = 48x - x^2 \)[/tex] is a quadratic function in the form [tex]\( P = -x^2 + 48x \)[/tex].
- The maximum value of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] occurs at the vertex, which is given by [tex]\( x = -\frac{b}{2a} \)[/tex].
- Here, [tex]\( a = -1 \)[/tex] and [tex]\( b = 48 \)[/tex], so the vertex is at:
[tex]\[ x = -\frac{48}{2 \cdot -1} = 24 \][/tex]
5. Conclusion:
- The value of [tex]\( x \)[/tex] that maximizes the product is 24.
- The corresponding other number is [tex]\( 48 - 24 = 24 \)[/tex].
Therefore, the two nonnegative real numbers that sum to 48 and have the largest possible product are:
[tex]\[ 24, 24 \][/tex]
In summary:
- The objective function in terms of [tex]\( x \)[/tex] is [tex]\( P = 48x - x^2 \)[/tex].
- The interval of interest is [tex]\([0, 48]\)[/tex].
- The numbers that have the largest possible product are [tex]\( 24 \)[/tex] and [tex]\( 24 \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.