At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve this problem step-by-step.
1. Define the Problem:
- Let's denote one of the numbers as [tex]\( x \)[/tex].
- Since the sum of the two numbers is 48, the other number is [tex]\( 48 - x \)[/tex].
2. Write the Objective Function:
- The product [tex]\( P \)[/tex] of these two numbers is given by:
[tex]\[ P = x \cdot (48 - x) \][/tex]
Which simplifies to:
[tex]\[ P = 48x - x^2 \][/tex]
3. Determine the Interval:
- Since we are dealing with nonnegative real numbers, [tex]\( x \)[/tex] must satisfy:
[tex]\[ 0 \leq x \leq 48 \][/tex]
Therefore, the interval of interest for [tex]\( x \)[/tex] is [tex]\( [0, 48] \)[/tex].
4. Find the Maximum Product:
- The function [tex]\( P = 48x - x^2 \)[/tex] is a quadratic function in the form [tex]\( P = -x^2 + 48x \)[/tex].
- The maximum value of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] occurs at the vertex, which is given by [tex]\( x = -\frac{b}{2a} \)[/tex].
- Here, [tex]\( a = -1 \)[/tex] and [tex]\( b = 48 \)[/tex], so the vertex is at:
[tex]\[ x = -\frac{48}{2 \cdot -1} = 24 \][/tex]
5. Conclusion:
- The value of [tex]\( x \)[/tex] that maximizes the product is 24.
- The corresponding other number is [tex]\( 48 - 24 = 24 \)[/tex].
Therefore, the two nonnegative real numbers that sum to 48 and have the largest possible product are:
[tex]\[ 24, 24 \][/tex]
In summary:
- The objective function in terms of [tex]\( x \)[/tex] is [tex]\( P = 48x - x^2 \)[/tex].
- The interval of interest is [tex]\([0, 48]\)[/tex].
- The numbers that have the largest possible product are [tex]\( 24 \)[/tex] and [tex]\( 24 \)[/tex].
1. Define the Problem:
- Let's denote one of the numbers as [tex]\( x \)[/tex].
- Since the sum of the two numbers is 48, the other number is [tex]\( 48 - x \)[/tex].
2. Write the Objective Function:
- The product [tex]\( P \)[/tex] of these two numbers is given by:
[tex]\[ P = x \cdot (48 - x) \][/tex]
Which simplifies to:
[tex]\[ P = 48x - x^2 \][/tex]
3. Determine the Interval:
- Since we are dealing with nonnegative real numbers, [tex]\( x \)[/tex] must satisfy:
[tex]\[ 0 \leq x \leq 48 \][/tex]
Therefore, the interval of interest for [tex]\( x \)[/tex] is [tex]\( [0, 48] \)[/tex].
4. Find the Maximum Product:
- The function [tex]\( P = 48x - x^2 \)[/tex] is a quadratic function in the form [tex]\( P = -x^2 + 48x \)[/tex].
- The maximum value of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] occurs at the vertex, which is given by [tex]\( x = -\frac{b}{2a} \)[/tex].
- Here, [tex]\( a = -1 \)[/tex] and [tex]\( b = 48 \)[/tex], so the vertex is at:
[tex]\[ x = -\frac{48}{2 \cdot -1} = 24 \][/tex]
5. Conclusion:
- The value of [tex]\( x \)[/tex] that maximizes the product is 24.
- The corresponding other number is [tex]\( 48 - 24 = 24 \)[/tex].
Therefore, the two nonnegative real numbers that sum to 48 and have the largest possible product are:
[tex]\[ 24, 24 \][/tex]
In summary:
- The objective function in terms of [tex]\( x \)[/tex] is [tex]\( P = 48x - x^2 \)[/tex].
- The interval of interest is [tex]\([0, 48]\)[/tex].
- The numbers that have the largest possible product are [tex]\( 24 \)[/tex] and [tex]\( 24 \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.