Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's carefully examine the situation step-by-step to understand where Lucia made the error.
1. Define the Polynomials:
The two polynomials given are:
[tex]\[ \text{poly1} = 3x^2 + 3x + 5 \][/tex]
[tex]\[ \text{poly2} = 7x^2 - 9x + 8 \][/tex]
2. Combine Like Terms:
For each type of term (i.e., [tex]\(x^2\)[/tex], [tex]\(x\)[/tex], and the constant), we need to combine the coefficients:
- [tex]\(x^2\)[/tex] terms:
[tex]\[ 3x^2 + 7x^2 = 10x^2 \][/tex]
This is correct.
- [tex]\(x\)[/tex] terms:
[tex]\[ 3x + (-9x) = -6x \][/tex]
Lucia’s result was [tex]\(-12x\)[/tex]. Here, we observe a discrepancy.
- Constant terms:
[tex]\[ 5 + 8 = 13 \][/tex]
This is correct.
3. Check Lucia’s Answer:
Lucia provided the result:
[tex]\[ 10x^2 - 12x + 13 \][/tex]
Comparing her result to our combined terms:
[tex]\[ \text{Correct: } 10x^2 - 6x + 13 \][/tex]
[tex]\[ \text{Lucia: } 10x^2 - 12x + 13 \][/tex]
4. Identify the Errors:
Looking closely, we notice:
- The [tex]\(x^2\)[/tex] term is correctly combined: [tex]\(10x^2\)[/tex].
- The constant term is correctly combined: [tex]\(13\)[/tex].
- The [tex]\(x\)[/tex] term is incorrectly combined. The correct [tex]\(x\)[/tex] term should be [tex]\(-6x\)[/tex], but Lucia has [tex]\(-12x\)[/tex].
Error Analysis:
- [tex]\(x\)[/tex] term discrepancy: Lucia combined the terms [tex]\(3x\)[/tex] and [tex]\(-9x\)[/tex] incorrectly, resulting in [tex]\(-12x\)[/tex] instead of [tex]\(-6x\)[/tex].
Therefore, the correct answer to the question is:
She combined the terms [tex]\(3x\)[/tex] and [tex]\(-9x\)[/tex] incorrectly.
1. Define the Polynomials:
The two polynomials given are:
[tex]\[ \text{poly1} = 3x^2 + 3x + 5 \][/tex]
[tex]\[ \text{poly2} = 7x^2 - 9x + 8 \][/tex]
2. Combine Like Terms:
For each type of term (i.e., [tex]\(x^2\)[/tex], [tex]\(x\)[/tex], and the constant), we need to combine the coefficients:
- [tex]\(x^2\)[/tex] terms:
[tex]\[ 3x^2 + 7x^2 = 10x^2 \][/tex]
This is correct.
- [tex]\(x\)[/tex] terms:
[tex]\[ 3x + (-9x) = -6x \][/tex]
Lucia’s result was [tex]\(-12x\)[/tex]. Here, we observe a discrepancy.
- Constant terms:
[tex]\[ 5 + 8 = 13 \][/tex]
This is correct.
3. Check Lucia’s Answer:
Lucia provided the result:
[tex]\[ 10x^2 - 12x + 13 \][/tex]
Comparing her result to our combined terms:
[tex]\[ \text{Correct: } 10x^2 - 6x + 13 \][/tex]
[tex]\[ \text{Lucia: } 10x^2 - 12x + 13 \][/tex]
4. Identify the Errors:
Looking closely, we notice:
- The [tex]\(x^2\)[/tex] term is correctly combined: [tex]\(10x^2\)[/tex].
- The constant term is correctly combined: [tex]\(13\)[/tex].
- The [tex]\(x\)[/tex] term is incorrectly combined. The correct [tex]\(x\)[/tex] term should be [tex]\(-6x\)[/tex], but Lucia has [tex]\(-12x\)[/tex].
Error Analysis:
- [tex]\(x\)[/tex] term discrepancy: Lucia combined the terms [tex]\(3x\)[/tex] and [tex]\(-9x\)[/tex] incorrectly, resulting in [tex]\(-12x\)[/tex] instead of [tex]\(-6x\)[/tex].
Therefore, the correct answer to the question is:
She combined the terms [tex]\(3x\)[/tex] and [tex]\(-9x\)[/tex] incorrectly.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.