Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the gravitational force you would experience on the surface of the Moon, we can use Newton's law of gravitation, which states:
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F_{\text{gravity}} \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the Moon, [tex]\( 7.35 \times 10^{22} \, \text{kg} \)[/tex],
- [tex]\( m_2 \)[/tex] is your mass, [tex]\( 68.05 \, \text{kg} \)[/tex],
- [tex]\( r \)[/tex] is the radius of the Moon, [tex]\( 1.74 \times 10^6 \, \text{m} \)[/tex].
Plugging in these values into the equation, we get:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \cdot (7.35 \times 10^{22} \, \text{kg}) \cdot (68.05 \, \text{kg})}{(1.74 \times 10^6 \, \text{m})^2} \][/tex]
First, let's calculate [tex]\( (1.74 \times 10^6 \, \text{m})^2 \)[/tex]:
[tex]\[ (1.74 \times 10^6)^2 = 3.0276 \times 10^{12} \, \text{m}^2 \][/tex]
Next, we'll multiply the constants and masses in the numerator:
[tex]\[ (6.67 \times 10^{-11}) \cdot (7.35 \times 10^{22}) \cdot (68.05) = 3.324263775 \times 10^{14} \, \text{N} \cdot \text{m}^2 / \text{kg} \][/tex]
Now, we divide the result from the numerator by the result from the denominator:
[tex]\[ F_{\text{gravity}} = \frac{3.324263775 \times 10^{14}}{3.0276 \times 10^{12}} \approx 110.19015804597701 \, \text{N} \][/tex]
Thus, the gravitational force you would experience on the surface of the Moon is approximately [tex]\( 110 \, \text{N} \)[/tex].
The correct answer is:
C. [tex]\( 110 \, \text{N} \)[/tex]
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F_{\text{gravity}} \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the Moon, [tex]\( 7.35 \times 10^{22} \, \text{kg} \)[/tex],
- [tex]\( m_2 \)[/tex] is your mass, [tex]\( 68.05 \, \text{kg} \)[/tex],
- [tex]\( r \)[/tex] is the radius of the Moon, [tex]\( 1.74 \times 10^6 \, \text{m} \)[/tex].
Plugging in these values into the equation, we get:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \cdot (7.35 \times 10^{22} \, \text{kg}) \cdot (68.05 \, \text{kg})}{(1.74 \times 10^6 \, \text{m})^2} \][/tex]
First, let's calculate [tex]\( (1.74 \times 10^6 \, \text{m})^2 \)[/tex]:
[tex]\[ (1.74 \times 10^6)^2 = 3.0276 \times 10^{12} \, \text{m}^2 \][/tex]
Next, we'll multiply the constants and masses in the numerator:
[tex]\[ (6.67 \times 10^{-11}) \cdot (7.35 \times 10^{22}) \cdot (68.05) = 3.324263775 \times 10^{14} \, \text{N} \cdot \text{m}^2 / \text{kg} \][/tex]
Now, we divide the result from the numerator by the result from the denominator:
[tex]\[ F_{\text{gravity}} = \frac{3.324263775 \times 10^{14}}{3.0276 \times 10^{12}} \approx 110.19015804597701 \, \text{N} \][/tex]
Thus, the gravitational force you would experience on the surface of the Moon is approximately [tex]\( 110 \, \text{N} \)[/tex].
The correct answer is:
C. [tex]\( 110 \, \text{N} \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.