Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the gravitational force you would experience on the surface of the Moon, we can use Newton's law of gravitation, which states:
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F_{\text{gravity}} \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the Moon, [tex]\( 7.35 \times 10^{22} \, \text{kg} \)[/tex],
- [tex]\( m_2 \)[/tex] is your mass, [tex]\( 68.05 \, \text{kg} \)[/tex],
- [tex]\( r \)[/tex] is the radius of the Moon, [tex]\( 1.74 \times 10^6 \, \text{m} \)[/tex].
Plugging in these values into the equation, we get:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \cdot (7.35 \times 10^{22} \, \text{kg}) \cdot (68.05 \, \text{kg})}{(1.74 \times 10^6 \, \text{m})^2} \][/tex]
First, let's calculate [tex]\( (1.74 \times 10^6 \, \text{m})^2 \)[/tex]:
[tex]\[ (1.74 \times 10^6)^2 = 3.0276 \times 10^{12} \, \text{m}^2 \][/tex]
Next, we'll multiply the constants and masses in the numerator:
[tex]\[ (6.67 \times 10^{-11}) \cdot (7.35 \times 10^{22}) \cdot (68.05) = 3.324263775 \times 10^{14} \, \text{N} \cdot \text{m}^2 / \text{kg} \][/tex]
Now, we divide the result from the numerator by the result from the denominator:
[tex]\[ F_{\text{gravity}} = \frac{3.324263775 \times 10^{14}}{3.0276 \times 10^{12}} \approx 110.19015804597701 \, \text{N} \][/tex]
Thus, the gravitational force you would experience on the surface of the Moon is approximately [tex]\( 110 \, \text{N} \)[/tex].
The correct answer is:
C. [tex]\( 110 \, \text{N} \)[/tex]
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F_{\text{gravity}} \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the Moon, [tex]\( 7.35 \times 10^{22} \, \text{kg} \)[/tex],
- [tex]\( m_2 \)[/tex] is your mass, [tex]\( 68.05 \, \text{kg} \)[/tex],
- [tex]\( r \)[/tex] is the radius of the Moon, [tex]\( 1.74 \times 10^6 \, \text{m} \)[/tex].
Plugging in these values into the equation, we get:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \cdot (7.35 \times 10^{22} \, \text{kg}) \cdot (68.05 \, \text{kg})}{(1.74 \times 10^6 \, \text{m})^2} \][/tex]
First, let's calculate [tex]\( (1.74 \times 10^6 \, \text{m})^2 \)[/tex]:
[tex]\[ (1.74 \times 10^6)^2 = 3.0276 \times 10^{12} \, \text{m}^2 \][/tex]
Next, we'll multiply the constants and masses in the numerator:
[tex]\[ (6.67 \times 10^{-11}) \cdot (7.35 \times 10^{22}) \cdot (68.05) = 3.324263775 \times 10^{14} \, \text{N} \cdot \text{m}^2 / \text{kg} \][/tex]
Now, we divide the result from the numerator by the result from the denominator:
[tex]\[ F_{\text{gravity}} = \frac{3.324263775 \times 10^{14}}{3.0276 \times 10^{12}} \approx 110.19015804597701 \, \text{N} \][/tex]
Thus, the gravitational force you would experience on the surface of the Moon is approximately [tex]\( 110 \, \text{N} \)[/tex].
The correct answer is:
C. [tex]\( 110 \, \text{N} \)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.