Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Evaluate the following limit. Use l'Hôpital's Rule when it is convenient and applicable.

[tex]\[ \lim _{x \rightarrow 0} \frac{3 \sin 8 x}{5 x} \][/tex]

Use l'Hôpital's Rule to rewrite the given limit so that it is not an indeterminate form.

[tex]\[ \lim _{x \rightarrow 0} \frac{3 \sin 8 x}{5 x} = \lim _{x \rightarrow 0}(\square) \][/tex]

Evaluate the limit.

[tex]\[ \lim _{x \rightarrow 0} \frac{3 \sin 8 x}{5 x} = \quad \text{(Type an exact answer.)} \][/tex]


Sagot :

To evaluate the limit
[tex]\[ \lim_{x \rightarrow 0} \frac{3 \sin 8x}{5 x} \][/tex]
we will use l'Hôpital's Rule because the expression [tex]\(\frac{0}{0}\)[/tex] is of indeterminate form as [tex]\(x \rightarrow 0\)[/tex]. L'Hôpital's Rule tells us that if the limits of the numerator and denominator both tend to zero, the limit of the quotient can be found by differentiating the numerator and the denominator.

First, let's apply l'Hôpital's Rule which requires us to differentiate the numerator and the denominator.

The numerator is [tex]\(3 \sin 8x\)[/tex]:
[tex]\[ \frac{d}{dx}[3 \sin 8x] = 3 \cdot (8 \cos 8x) = 24 \cos 8x \][/tex]

The denominator is [tex]\(5x\)[/tex]:
[tex]\[ \frac{d}{dx}[5x] = 5 \][/tex]

Using l'Hôpital's Rule, we can rewrite the original limit:
[tex]\[ \lim_{x \rightarrow 0} \frac{3 \sin 8x}{5 x} = \lim_{x \rightarrow 0} \frac{24 \cos 8x}{5} \][/tex]

Now, we evaluate the limit of this new expression:
[tex]\[ \lim_{x \rightarrow 0} \frac{24 \cos 8x}{5} \][/tex]

We know that [tex]\(\cos 8x \rightarrow \cos 0 = 1\)[/tex] as [tex]\(x \rightarrow 0\)[/tex]. Therefore:
[tex]\[ \frac{24 \cos 8 x}{5} \rightarrow \frac{24 \cdot 1}{5} = \frac{24}{5} \][/tex]

Hence, the limit is:
[tex]\[ \lim_{x \rightarrow 0} \frac{3 \sin 8x}{5 x} = \frac{24}{5} \][/tex]

So, the exact answer is:
[tex]\[ \frac{24}{5} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.