At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the correct rule for rotating a point [tex]\( (x, y) \)[/tex] [tex]\( 90^{\circ} \)[/tex] about the origin, we need to consider how such a rotation affects the coordinates of a point in the coordinate plane.
When we rotate a point [tex]\( (x, y) \)[/tex] [tex]\( 90^{\circ} \)[/tex] counterclockwise about the origin, the new position of the point will have specific coordinates. The rotation causes a swap and change of signs in a predefined way.
Here is a step-by-step explanation of what happens during a [tex]\( 90^{\circ} \)[/tex] counterclockwise rotation:
1. The new x-coordinate becomes the negative of the original y-coordinate.
2. The new y-coordinate becomes the original x-coordinate.
Thus, a point [tex]\( (x, y) \)[/tex] will be transformed to [tex]\( (-y, x) \)[/tex].
Let's apply this to the given options:
- [tex]\( (x, y) \rightarrow (-x, -y) \)[/tex] is not correct because this corresponds to a [tex]\( 180^{\circ} \)[/tex] rotation.
- [tex]\( (x, y) \rightarrow (-y, x) \)[/tex] is correct because it matches our determined transformation for a [tex]\( 90^{\circ} \)[/tex] counterclockwise rotation.
- [tex]\( (x, y) \rightarrow (-y, -x) \)[/tex] is not correct because it does not correspond to a proper rotation matrix transformation for [tex]\( 90^{\circ} \)[/tex].
- [tex]\( (x, y) \rightarrow (y, -x) \)[/tex] is not correct because this corresponds to a [tex]\( 270^{\circ} \)[/tex] (or [tex]\( -90^{\circ} \)[/tex]) rotation.
Therefore, the correct rule that describes the transformation of a [tex]\( 90^{\circ} \)[/tex] rotation about the origin is:
[tex]\[ (x, y) \rightarrow (-y, x) \][/tex]
So the answer is:
[tex]\[ (x, y) \rightarrow (-y, x) \][/tex]
which corresponds to the second option in the list.
When we rotate a point [tex]\( (x, y) \)[/tex] [tex]\( 90^{\circ} \)[/tex] counterclockwise about the origin, the new position of the point will have specific coordinates. The rotation causes a swap and change of signs in a predefined way.
Here is a step-by-step explanation of what happens during a [tex]\( 90^{\circ} \)[/tex] counterclockwise rotation:
1. The new x-coordinate becomes the negative of the original y-coordinate.
2. The new y-coordinate becomes the original x-coordinate.
Thus, a point [tex]\( (x, y) \)[/tex] will be transformed to [tex]\( (-y, x) \)[/tex].
Let's apply this to the given options:
- [tex]\( (x, y) \rightarrow (-x, -y) \)[/tex] is not correct because this corresponds to a [tex]\( 180^{\circ} \)[/tex] rotation.
- [tex]\( (x, y) \rightarrow (-y, x) \)[/tex] is correct because it matches our determined transformation for a [tex]\( 90^{\circ} \)[/tex] counterclockwise rotation.
- [tex]\( (x, y) \rightarrow (-y, -x) \)[/tex] is not correct because it does not correspond to a proper rotation matrix transformation for [tex]\( 90^{\circ} \)[/tex].
- [tex]\( (x, y) \rightarrow (y, -x) \)[/tex] is not correct because this corresponds to a [tex]\( 270^{\circ} \)[/tex] (or [tex]\( -90^{\circ} \)[/tex]) rotation.
Therefore, the correct rule that describes the transformation of a [tex]\( 90^{\circ} \)[/tex] rotation about the origin is:
[tex]\[ (x, y) \rightarrow (-y, x) \][/tex]
So the answer is:
[tex]\[ (x, y) \rightarrow (-y, x) \][/tex]
which corresponds to the second option in the list.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.