Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find all the antiderivatives of the function [tex]\( f(x) = 9 \sin x - 2 \)[/tex], we need to integrate the function. Let's break down the process step-by-step:
1. Identify the components of the function:
[tex]\( f(x) = 9 \sin x - 2 \)[/tex]
2. Integrate each term separately:
- The integral of [tex]\( 9 \sin x \)[/tex]:
[tex]\[ \int 9 \sin x \, dx \][/tex]
To integrate [tex]\( 9 \sin x \)[/tex], we know from calculus that the integral of [tex]\( \sin x \)[/tex] is [tex]\( -\cos x \)[/tex]. Therefore,
[tex]\[ \int 9 \sin x \, dx = 9 \left( \int \sin x \, dx \right) = 9 \left( -\cos x \right) = -9 \cos x \][/tex]
- The integral of [tex]\(-2\)[/tex]:
[tex]\[ \int -2 \, dx \][/tex]
The integral of a constant [tex]\( k \)[/tex] is [tex]\( kx \)[/tex]. Therefore,
[tex]\[ \int -2 \, dx = -2x \][/tex]
3. Combine the integrals:
Combining these results, we get the general antiderivative:
[tex]\[ F(x) = -9 \cos x - 2x + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
4. Check the work by taking the derivative of [tex]\( F(x) \)[/tex]:
[tex]\[ F(x) = -9 \cos x - 2x + C \][/tex]
To check, compute:
[tex]\[ F'(x) = \frac{d}{dx} \left( -9 \cos x - 2x + C \right) \][/tex]
- The derivative of [tex]\( -9 \cos x \)[/tex] is [tex]\( 9 \sin x \)[/tex].
- The derivative of [tex]\( -2x \)[/tex] is [tex]\( -2 \)[/tex].
- The derivative of the constant [tex]\( C \)[/tex] is [tex]\( 0 \)[/tex].
Therefore,
[tex]\[ F'(x) = 9 \sin x - 2 \][/tex]
This derivative matches the original function [tex]\( f(x) \)[/tex].
Thus, the antiderivative of [tex]\( f(x) = 9 \sin x - 2 \)[/tex] is:
[tex]\[ F(x) = -9 \cos x - 2x + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
1. Identify the components of the function:
[tex]\( f(x) = 9 \sin x - 2 \)[/tex]
2. Integrate each term separately:
- The integral of [tex]\( 9 \sin x \)[/tex]:
[tex]\[ \int 9 \sin x \, dx \][/tex]
To integrate [tex]\( 9 \sin x \)[/tex], we know from calculus that the integral of [tex]\( \sin x \)[/tex] is [tex]\( -\cos x \)[/tex]. Therefore,
[tex]\[ \int 9 \sin x \, dx = 9 \left( \int \sin x \, dx \right) = 9 \left( -\cos x \right) = -9 \cos x \][/tex]
- The integral of [tex]\(-2\)[/tex]:
[tex]\[ \int -2 \, dx \][/tex]
The integral of a constant [tex]\( k \)[/tex] is [tex]\( kx \)[/tex]. Therefore,
[tex]\[ \int -2 \, dx = -2x \][/tex]
3. Combine the integrals:
Combining these results, we get the general antiderivative:
[tex]\[ F(x) = -9 \cos x - 2x + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
4. Check the work by taking the derivative of [tex]\( F(x) \)[/tex]:
[tex]\[ F(x) = -9 \cos x - 2x + C \][/tex]
To check, compute:
[tex]\[ F'(x) = \frac{d}{dx} \left( -9 \cos x - 2x + C \right) \][/tex]
- The derivative of [tex]\( -9 \cos x \)[/tex] is [tex]\( 9 \sin x \)[/tex].
- The derivative of [tex]\( -2x \)[/tex] is [tex]\( -2 \)[/tex].
- The derivative of the constant [tex]\( C \)[/tex] is [tex]\( 0 \)[/tex].
Therefore,
[tex]\[ F'(x) = 9 \sin x - 2 \][/tex]
This derivative matches the original function [tex]\( f(x) \)[/tex].
Thus, the antiderivative of [tex]\( f(x) = 9 \sin x - 2 \)[/tex] is:
[tex]\[ F(x) = -9 \cos x - 2x + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.