Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the transformation from the graph of [tex]\( f(x) = x^2 \)[/tex] to the graph of [tex]\( f(x) = (x-3)^2 - 1 \)[/tex], we need to understand the effects of each term in the transformed function.
1. Horizontal Shift:
- The term [tex]\((x-3)\)[/tex] inside the squared function indicates a horizontal shift.
- In general, [tex]\( f(x-h) \)[/tex] represents a horizontal shift to the right by [tex]\( h \)[/tex] units.
- Here, [tex]\((x-3)\)[/tex] suggests that the graph shifts 3 units to the right.
2. Vertical Shift:
- The [tex]\(-1\)[/tex] outside the squared function indicates a vertical shift.
- In general, [tex]\( f(x) - k \)[/tex] represents a vertical shift downward by [tex]\( k \)[/tex] units.
- Here, [tex]\(-1\)[/tex] suggests that the graph shifts 1 unit down.
Combining both transformations:
- The graph of [tex]\( f(x) = x^2 \)[/tex] shifts 3 units to the right and 1 unit down to get the graph of [tex]\( f(x) = (x-3)^2 - 1 \)[/tex].
Thus, the best description of the transformation is right 3 units, down 1 unit.
1. Horizontal Shift:
- The term [tex]\((x-3)\)[/tex] inside the squared function indicates a horizontal shift.
- In general, [tex]\( f(x-h) \)[/tex] represents a horizontal shift to the right by [tex]\( h \)[/tex] units.
- Here, [tex]\((x-3)\)[/tex] suggests that the graph shifts 3 units to the right.
2. Vertical Shift:
- The [tex]\(-1\)[/tex] outside the squared function indicates a vertical shift.
- In general, [tex]\( f(x) - k \)[/tex] represents a vertical shift downward by [tex]\( k \)[/tex] units.
- Here, [tex]\(-1\)[/tex] suggests that the graph shifts 1 unit down.
Combining both transformations:
- The graph of [tex]\( f(x) = x^2 \)[/tex] shifts 3 units to the right and 1 unit down to get the graph of [tex]\( f(x) = (x-3)^2 - 1 \)[/tex].
Thus, the best description of the transformation is right 3 units, down 1 unit.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.