Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find [tex]\(\tan 3A\)[/tex] in terms of [tex]\(\tan A\)[/tex], let's analyze the problem step-by-step.
We start with identifying the tangent triple angle formula, which is expressed as:
[tex]\[ \tan(3A) = \frac{3\tan(A) - \tan^3(A)}{1 - 3\tan^2(A)} \][/tex]
We denote [tex]\(\tan A\)[/tex] as a variable, for simplicity, [tex]\( x = \tan A \)[/tex].
Now, substituting [tex]\( x \)[/tex] into the triple angle identity for [tex]\(\tan\)[/tex], we get:
[tex]\[ \tan(3A) = \frac{3x - x^3}{1 - 3x^2} \][/tex]
Here’s a detailed breakdown of how the formula is applied:
1. Numerator Evaluation:
- We have [tex]\( 3\tan A \)[/tex] which simplifies directly to [tex]\( 3x \)[/tex].
- We subtract [tex]\( \tan^3 A \)[/tex] which becomes [tex]\( x^3 \)[/tex].
Thus, the numerator of our fraction will be:
[tex]\[ 3x - x^3 \][/tex]
2. Denominator Evaluation:
- The denominator starts with 1.
- Then subtract [tex]\( 3\tan^2 A \)[/tex], which translates to [tex]\( 3x^2 \)[/tex].
Therefore, the denominator of our fraction will be:
[tex]\[ 1 - 3x^2 \][/tex]
Putting it all together, the expression for [tex]\(\tan(3A)\)[/tex] becomes:
[tex]\[ \tan(3A) = \frac{3x - x^3}{1 - 3x^2} \][/tex]
Finally, we substitute back [tex]\( x = \tan A \)[/tex] to reach the final form:
[tex]\[ \tan(3A) = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A} \][/tex]
So, the detailed step-by-step solution verifies that:
[tex]\[ \tan(3A) = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A} \][/tex]
And this matches precisely with our expected result.
We start with identifying the tangent triple angle formula, which is expressed as:
[tex]\[ \tan(3A) = \frac{3\tan(A) - \tan^3(A)}{1 - 3\tan^2(A)} \][/tex]
We denote [tex]\(\tan A\)[/tex] as a variable, for simplicity, [tex]\( x = \tan A \)[/tex].
Now, substituting [tex]\( x \)[/tex] into the triple angle identity for [tex]\(\tan\)[/tex], we get:
[tex]\[ \tan(3A) = \frac{3x - x^3}{1 - 3x^2} \][/tex]
Here’s a detailed breakdown of how the formula is applied:
1. Numerator Evaluation:
- We have [tex]\( 3\tan A \)[/tex] which simplifies directly to [tex]\( 3x \)[/tex].
- We subtract [tex]\( \tan^3 A \)[/tex] which becomes [tex]\( x^3 \)[/tex].
Thus, the numerator of our fraction will be:
[tex]\[ 3x - x^3 \][/tex]
2. Denominator Evaluation:
- The denominator starts with 1.
- Then subtract [tex]\( 3\tan^2 A \)[/tex], which translates to [tex]\( 3x^2 \)[/tex].
Therefore, the denominator of our fraction will be:
[tex]\[ 1 - 3x^2 \][/tex]
Putting it all together, the expression for [tex]\(\tan(3A)\)[/tex] becomes:
[tex]\[ \tan(3A) = \frac{3x - x^3}{1 - 3x^2} \][/tex]
Finally, we substitute back [tex]\( x = \tan A \)[/tex] to reach the final form:
[tex]\[ \tan(3A) = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A} \][/tex]
So, the detailed step-by-step solution verifies that:
[tex]\[ \tan(3A) = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A} \][/tex]
And this matches precisely with our expected result.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.