Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the values of [tex]\( h \)[/tex] and [tex]\( k \)[/tex] in the function [tex]\( g(x) = (x - h)^2 + k \)[/tex], we need to look at the vertex of the function.
The vertex form of a quadratic function [tex]\( g(x) = (x - h)^2 + k \)[/tex] tells us that the coordinates [tex]\( (h, k) \)[/tex] represent the vertex of the parabola.
In this problem, we're given that the vertex of the function [tex]\( g(x) \)[/tex] is at the point [tex]\((9, -8)\)[/tex].
Therefore:
- The value of [tex]\( h \)[/tex] is the x-coordinate of the vertex, which is [tex]\( 9 \)[/tex].
- The value of [tex]\( k \)[/tex] is the y-coordinate of the vertex, which is [tex]\( -8 \)[/tex].
So, we have:
[tex]\[ h = 9 \][/tex]
[tex]\[ k = -8 \][/tex]
Hence, the function [tex]\( g(x) = (x - h)^2 + k \)[/tex] can be written by substituting [tex]\( h \)[/tex] and [tex]\( k \)[/tex] with these values:
[tex]\[ g(x) = (x - 9)^2 - 8 \][/tex]
So, the filled-in function is:
[tex]\[ g(x) = (x - 9)^2 - 8 \][/tex]
The blanks in the function [tex]\( g(x) = (x - \square )^2 + \square \)[/tex] are filled as follows:
[tex]\[ g(x) = (x - \boxed{9})^2 + \boxed{-8} \][/tex]
Thus, the values of [tex]\( h \)[/tex] and [tex]\( k \)[/tex] are:
[tex]\[ h = 9 \][/tex]
[tex]\[ k = -8 \][/tex]
The vertex form of a quadratic function [tex]\( g(x) = (x - h)^2 + k \)[/tex] tells us that the coordinates [tex]\( (h, k) \)[/tex] represent the vertex of the parabola.
In this problem, we're given that the vertex of the function [tex]\( g(x) \)[/tex] is at the point [tex]\((9, -8)\)[/tex].
Therefore:
- The value of [tex]\( h \)[/tex] is the x-coordinate of the vertex, which is [tex]\( 9 \)[/tex].
- The value of [tex]\( k \)[/tex] is the y-coordinate of the vertex, which is [tex]\( -8 \)[/tex].
So, we have:
[tex]\[ h = 9 \][/tex]
[tex]\[ k = -8 \][/tex]
Hence, the function [tex]\( g(x) = (x - h)^2 + k \)[/tex] can be written by substituting [tex]\( h \)[/tex] and [tex]\( k \)[/tex] with these values:
[tex]\[ g(x) = (x - 9)^2 - 8 \][/tex]
So, the filled-in function is:
[tex]\[ g(x) = (x - 9)^2 - 8 \][/tex]
The blanks in the function [tex]\( g(x) = (x - \square )^2 + \square \)[/tex] are filled as follows:
[tex]\[ g(x) = (x - \boxed{9})^2 + \boxed{-8} \][/tex]
Thus, the values of [tex]\( h \)[/tex] and [tex]\( k \)[/tex] are:
[tex]\[ h = 9 \][/tex]
[tex]\[ k = -8 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.