Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the tangential speed of an object orbiting Earth given a radius of [tex]\(1.8 \times 10^8 \)[/tex] meters and a period of [tex]\(2 \times 10^4 \)[/tex] seconds, we can use the formula for tangential speed in circular motion:
[tex]\[ v = \frac{2\pi r}{T} \][/tex]
where
- [tex]\( v \)[/tex] is the tangential speed,
- [tex]\( r \)[/tex] is the radius of the orbit,
- [tex]\( T \)[/tex] is the period of the orbit,
- [tex]\(\pi \)[/tex] is approximately 3.14159.
Let's break down the problem and solve it step by step.
1. Identify the given values:
- Radius [tex]\( r = 1.8 \times 10^8 \)[/tex] meters
- Period [tex]\( T = 2 \times 10^4 \)[/tex] seconds
2. Substitute the given values into the formula:
[tex]\[ v = \frac{2 \pi \cdot (1.8 \times 10^8)}{2 \times 10^4} \][/tex]
3. Simplify the expression inside the numerator:
[tex]\[ 2 \pi \cdot (1.8 \times 10^8) \][/tex]
This gives:
[tex]\[ 2 \cdot 3.14159 \cdot 1.8 \times 10^8 \][/tex]
[tex]\[ = 11.30973 \times 10^8 \][/tex]
4. Now, divide by the period:
[tex]\[ v = \frac{11.30973 \times 10^8}{2 \times 10^4} \][/tex]
5. Perform the division:
[tex]\[ v = \frac{11.30973 \times 10^8}{2 \times 10^4} \][/tex]
[tex]\[ = \frac{11.30973}{2} \times 10^{8-4} \][/tex]
[tex]\[ = 5.654865 \times 10^4 \][/tex]
Given the choices:
- [tex]\(7.7 \times 10^{-4} \text{ m/s}\)[/tex]
- [tex]\(5.1 \times 10^4 \text{ m/s}\)[/tex]
- [tex]\(7.7 \times 10^4 \text{ m/s}\)[/tex]
- [tex]\(5.1 \times 10^5 \text{ m/s}\)[/tex]
We see that the closest answer to our calculation of [tex]\(5.654865 \times 10^4 \text{ m/s}\)[/tex] is [tex]\(5.1 \times 10^4 \text{ m/s}\)[/tex].
Thus, the correct choice is:
[tex]\[ \boxed{5.1 \times 10^4 \text{ m/s}} \][/tex]
[tex]\[ v = \frac{2\pi r}{T} \][/tex]
where
- [tex]\( v \)[/tex] is the tangential speed,
- [tex]\( r \)[/tex] is the radius of the orbit,
- [tex]\( T \)[/tex] is the period of the orbit,
- [tex]\(\pi \)[/tex] is approximately 3.14159.
Let's break down the problem and solve it step by step.
1. Identify the given values:
- Radius [tex]\( r = 1.8 \times 10^8 \)[/tex] meters
- Period [tex]\( T = 2 \times 10^4 \)[/tex] seconds
2. Substitute the given values into the formula:
[tex]\[ v = \frac{2 \pi \cdot (1.8 \times 10^8)}{2 \times 10^4} \][/tex]
3. Simplify the expression inside the numerator:
[tex]\[ 2 \pi \cdot (1.8 \times 10^8) \][/tex]
This gives:
[tex]\[ 2 \cdot 3.14159 \cdot 1.8 \times 10^8 \][/tex]
[tex]\[ = 11.30973 \times 10^8 \][/tex]
4. Now, divide by the period:
[tex]\[ v = \frac{11.30973 \times 10^8}{2 \times 10^4} \][/tex]
5. Perform the division:
[tex]\[ v = \frac{11.30973 \times 10^8}{2 \times 10^4} \][/tex]
[tex]\[ = \frac{11.30973}{2} \times 10^{8-4} \][/tex]
[tex]\[ = 5.654865 \times 10^4 \][/tex]
Given the choices:
- [tex]\(7.7 \times 10^{-4} \text{ m/s}\)[/tex]
- [tex]\(5.1 \times 10^4 \text{ m/s}\)[/tex]
- [tex]\(7.7 \times 10^4 \text{ m/s}\)[/tex]
- [tex]\(5.1 \times 10^5 \text{ m/s}\)[/tex]
We see that the closest answer to our calculation of [tex]\(5.654865 \times 10^4 \text{ m/s}\)[/tex] is [tex]\(5.1 \times 10^4 \text{ m/s}\)[/tex].
Thus, the correct choice is:
[tex]\[ \boxed{5.1 \times 10^4 \text{ m/s}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.