Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the interval over which the graph of the function [tex]\( f(x) = 2(x + 3)^2 + 2 \)[/tex] is decreasing, we need to analyze the properties of the function.
1. Understanding the Function's Form:
The given function is in vertex form of a parabola, [tex]\( f(x) = a(x-h)^2 + k \)[/tex], where [tex]\( (h, k) \)[/tex] is the vertex of the parabola. Comparing the given function [tex]\( f(x) = 2(x + 3)^2 + 2 \)[/tex] to the vertex form:
- Here, [tex]\( a = 2 \)[/tex], [tex]\( h = -3 \)[/tex], and [tex]\( k = 2 \)[/tex].
- The vertex of the parabola is therefore at [tex]\( (-3, 2) \)[/tex].
2. Direction of the Parabola:
- Since the coefficient [tex]\( a = 2 \)[/tex] is positive, the parabola opens upwards.
3. Behavior of the Function Around the Vertex:
- For parabolas that open upwards, they decrease to the left of the vertex and increase to the right of the vertex.
- Thus, the function [tex]\( f(x) \)[/tex] will be decreasing to the left of the vertex (i.e., for [tex]\( x < -3 \)[/tex]).
4. Determining the Interval:
- Since the vertex [tex]\( x = -3 \)[/tex] is the turning point where the function changes from decreasing to increasing, the interval over which the function is decreasing is [tex]\( x < -3 \)[/tex].
5. Conclusion:
The interval over which the function [tex]\( f(x) = 2(x + 3)^2 + 2 \)[/tex] is decreasing is [tex]\((-∞, -3)\)[/tex].
Thus, the correct answer is:
[tex]\[ (-\infty, -3) \][/tex]
1. Understanding the Function's Form:
The given function is in vertex form of a parabola, [tex]\( f(x) = a(x-h)^2 + k \)[/tex], where [tex]\( (h, k) \)[/tex] is the vertex of the parabola. Comparing the given function [tex]\( f(x) = 2(x + 3)^2 + 2 \)[/tex] to the vertex form:
- Here, [tex]\( a = 2 \)[/tex], [tex]\( h = -3 \)[/tex], and [tex]\( k = 2 \)[/tex].
- The vertex of the parabola is therefore at [tex]\( (-3, 2) \)[/tex].
2. Direction of the Parabola:
- Since the coefficient [tex]\( a = 2 \)[/tex] is positive, the parabola opens upwards.
3. Behavior of the Function Around the Vertex:
- For parabolas that open upwards, they decrease to the left of the vertex and increase to the right of the vertex.
- Thus, the function [tex]\( f(x) \)[/tex] will be decreasing to the left of the vertex (i.e., for [tex]\( x < -3 \)[/tex]).
4. Determining the Interval:
- Since the vertex [tex]\( x = -3 \)[/tex] is the turning point where the function changes from decreasing to increasing, the interval over which the function is decreasing is [tex]\( x < -3 \)[/tex].
5. Conclusion:
The interval over which the function [tex]\( f(x) = 2(x + 3)^2 + 2 \)[/tex] is decreasing is [tex]\((-∞, -3)\)[/tex].
Thus, the correct answer is:
[tex]\[ (-\infty, -3) \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.