Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the quadratic equation [tex]\(-8x^2 - 5x + 3 = 0\)[/tex] using the quadratic formula, follow these steps:
1. Identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] from the equation [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ a = -8, \quad b = -5, \quad c = 3 \][/tex]
2. Compute the discriminant [tex]\(\Delta\)[/tex] using the formula [tex]\(\Delta = b^2 - 4ac\)[/tex]:
[tex]\[ \Delta = (-5)^2 - 4 \cdot (-8) \cdot 3 \][/tex]
[tex]\[ \Delta = 25 + 96 \][/tex]
[tex]\[ \Delta = 121 \][/tex]
3. Determine the nature of the roots by examining the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], there is one real root (a repeated root).
- If [tex]\(\Delta < 0\)[/tex], there are no real roots.
Since [tex]\(\Delta = 121 > 0\)[/tex], there are two distinct real roots.
4. Use the quadratic formula to find the roots:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
5. Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\Delta\)[/tex] into the formula:
[tex]\[ x = \frac{-(-5) \pm \sqrt{121}}{2 \cdot (-8)} \][/tex]
[tex]\[ x = \frac{5 \pm 11}{-16} \][/tex]
6. Calculate the two solutions:
[tex]\[ x_1 = \frac{5 + 11}{-16} = \frac{16}{-16} = -1.0 \][/tex]
[tex]\[ x_2 = \frac{5 - 11}{-16} = \frac{-6}{-16} = 0.375 \approx 0.38 \][/tex]
7. Round the answers to two decimal places, if necessary.
The solutions to the equation [tex]\(-8x^2 - 5x + 3 = 0\)[/tex] are:
[tex]\[ x_1 = -1.0 \quad \text{and} \quad x_2 = 0.38 \][/tex]
The discriminant value [tex]\(\Delta\)[/tex] is [tex]\(121\)[/tex], confirming that there are two real roots for the given quadratic equation.
1. Identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] from the equation [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ a = -8, \quad b = -5, \quad c = 3 \][/tex]
2. Compute the discriminant [tex]\(\Delta\)[/tex] using the formula [tex]\(\Delta = b^2 - 4ac\)[/tex]:
[tex]\[ \Delta = (-5)^2 - 4 \cdot (-8) \cdot 3 \][/tex]
[tex]\[ \Delta = 25 + 96 \][/tex]
[tex]\[ \Delta = 121 \][/tex]
3. Determine the nature of the roots by examining the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], there is one real root (a repeated root).
- If [tex]\(\Delta < 0\)[/tex], there are no real roots.
Since [tex]\(\Delta = 121 > 0\)[/tex], there are two distinct real roots.
4. Use the quadratic formula to find the roots:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
5. Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\Delta\)[/tex] into the formula:
[tex]\[ x = \frac{-(-5) \pm \sqrt{121}}{2 \cdot (-8)} \][/tex]
[tex]\[ x = \frac{5 \pm 11}{-16} \][/tex]
6. Calculate the two solutions:
[tex]\[ x_1 = \frac{5 + 11}{-16} = \frac{16}{-16} = -1.0 \][/tex]
[tex]\[ x_2 = \frac{5 - 11}{-16} = \frac{-6}{-16} = 0.375 \approx 0.38 \][/tex]
7. Round the answers to two decimal places, if necessary.
The solutions to the equation [tex]\(-8x^2 - 5x + 3 = 0\)[/tex] are:
[tex]\[ x_1 = -1.0 \quad \text{and} \quad x_2 = 0.38 \][/tex]
The discriminant value [tex]\(\Delta\)[/tex] is [tex]\(121\)[/tex], confirming that there are two real roots for the given quadratic equation.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.