Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the quadratic equation [tex]\(-8x^2 - 5x + 3 = 0\)[/tex] using the quadratic formula, follow these steps:
1. Identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] from the equation [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ a = -8, \quad b = -5, \quad c = 3 \][/tex]
2. Compute the discriminant [tex]\(\Delta\)[/tex] using the formula [tex]\(\Delta = b^2 - 4ac\)[/tex]:
[tex]\[ \Delta = (-5)^2 - 4 \cdot (-8) \cdot 3 \][/tex]
[tex]\[ \Delta = 25 + 96 \][/tex]
[tex]\[ \Delta = 121 \][/tex]
3. Determine the nature of the roots by examining the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], there is one real root (a repeated root).
- If [tex]\(\Delta < 0\)[/tex], there are no real roots.
Since [tex]\(\Delta = 121 > 0\)[/tex], there are two distinct real roots.
4. Use the quadratic formula to find the roots:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
5. Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\Delta\)[/tex] into the formula:
[tex]\[ x = \frac{-(-5) \pm \sqrt{121}}{2 \cdot (-8)} \][/tex]
[tex]\[ x = \frac{5 \pm 11}{-16} \][/tex]
6. Calculate the two solutions:
[tex]\[ x_1 = \frac{5 + 11}{-16} = \frac{16}{-16} = -1.0 \][/tex]
[tex]\[ x_2 = \frac{5 - 11}{-16} = \frac{-6}{-16} = 0.375 \approx 0.38 \][/tex]
7. Round the answers to two decimal places, if necessary.
The solutions to the equation [tex]\(-8x^2 - 5x + 3 = 0\)[/tex] are:
[tex]\[ x_1 = -1.0 \quad \text{and} \quad x_2 = 0.38 \][/tex]
The discriminant value [tex]\(\Delta\)[/tex] is [tex]\(121\)[/tex], confirming that there are two real roots for the given quadratic equation.
1. Identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] from the equation [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ a = -8, \quad b = -5, \quad c = 3 \][/tex]
2. Compute the discriminant [tex]\(\Delta\)[/tex] using the formula [tex]\(\Delta = b^2 - 4ac\)[/tex]:
[tex]\[ \Delta = (-5)^2 - 4 \cdot (-8) \cdot 3 \][/tex]
[tex]\[ \Delta = 25 + 96 \][/tex]
[tex]\[ \Delta = 121 \][/tex]
3. Determine the nature of the roots by examining the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], there is one real root (a repeated root).
- If [tex]\(\Delta < 0\)[/tex], there are no real roots.
Since [tex]\(\Delta = 121 > 0\)[/tex], there are two distinct real roots.
4. Use the quadratic formula to find the roots:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
5. Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\Delta\)[/tex] into the formula:
[tex]\[ x = \frac{-(-5) \pm \sqrt{121}}{2 \cdot (-8)} \][/tex]
[tex]\[ x = \frac{5 \pm 11}{-16} \][/tex]
6. Calculate the two solutions:
[tex]\[ x_1 = \frac{5 + 11}{-16} = \frac{16}{-16} = -1.0 \][/tex]
[tex]\[ x_2 = \frac{5 - 11}{-16} = \frac{-6}{-16} = 0.375 \approx 0.38 \][/tex]
7. Round the answers to two decimal places, if necessary.
The solutions to the equation [tex]\(-8x^2 - 5x + 3 = 0\)[/tex] are:
[tex]\[ x_1 = -1.0 \quad \text{and} \quad x_2 = 0.38 \][/tex]
The discriminant value [tex]\(\Delta\)[/tex] is [tex]\(121\)[/tex], confirming that there are two real roots for the given quadratic equation.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.