Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve the given problem step-by-step.
1. Identify the known information:
- The total length of [tex]\( AB \)[/tex] is 18 cm.
- Let [tex]\( AC \)[/tex] be the distance from [tex]\( A \)[/tex] to [tex]\( C \)[/tex].
- Let [tex]\( CB \)[/tex] be the distance from [tex]\( C \)[/tex] to [tex]\( B \)[/tex].
- We are given that [tex]\( AC \)[/tex] is 3 cm shorter than [tex]\( CB \)[/tex].
2. Establish relationships based on the information given:
- We can denote the distance [tex]\( AC \)[/tex] as [tex]\( x \)[/tex] cm.
- Since [tex]\( AC \)[/tex] is 3 cm shorter than [tex]\( CB \)[/tex], we can write [tex]\( CB \)[/tex] as [tex]\( x + 3 \)[/tex] cm.
- The sum of [tex]\( AC \)[/tex] and [tex]\( CB \)[/tex] is equal to the length of [tex]\( AB \)[/tex]. So, [tex]\( x + (x + 3) = 18 \)[/tex].
3. Set up the equation:
- From the relationship above:
[tex]\[ x + (x + 3) = 18 \][/tex]
- Simplify the equation:
[tex]\[ 2x + 3 = 18 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
- Subtract 3 from both sides:
[tex]\[ 2x = 15 \][/tex]
- Divide both sides by 2:
[tex]\[ x = 7.5 \][/tex]
5. Calculate [tex]\( CB \)[/tex]:
- Since [tex]\( CB = x + 3 \)[/tex]:
[tex]\[ CB = 7.5 + 3 = 10.5 \][/tex]
So, the distances are:
[tex]\[ AC = 7.5 \, \text{cm} \][/tex]
[tex]\[ CB = 10.5 \, \text{cm} \][/tex]
Therefore, the lengths are:
[tex]\[ AC = 7.5 \, \text{cm}, \quad CB = 10.5 \, \text{cm} \][/tex]
1. Identify the known information:
- The total length of [tex]\( AB \)[/tex] is 18 cm.
- Let [tex]\( AC \)[/tex] be the distance from [tex]\( A \)[/tex] to [tex]\( C \)[/tex].
- Let [tex]\( CB \)[/tex] be the distance from [tex]\( C \)[/tex] to [tex]\( B \)[/tex].
- We are given that [tex]\( AC \)[/tex] is 3 cm shorter than [tex]\( CB \)[/tex].
2. Establish relationships based on the information given:
- We can denote the distance [tex]\( AC \)[/tex] as [tex]\( x \)[/tex] cm.
- Since [tex]\( AC \)[/tex] is 3 cm shorter than [tex]\( CB \)[/tex], we can write [tex]\( CB \)[/tex] as [tex]\( x + 3 \)[/tex] cm.
- The sum of [tex]\( AC \)[/tex] and [tex]\( CB \)[/tex] is equal to the length of [tex]\( AB \)[/tex]. So, [tex]\( x + (x + 3) = 18 \)[/tex].
3. Set up the equation:
- From the relationship above:
[tex]\[ x + (x + 3) = 18 \][/tex]
- Simplify the equation:
[tex]\[ 2x + 3 = 18 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
- Subtract 3 from both sides:
[tex]\[ 2x = 15 \][/tex]
- Divide both sides by 2:
[tex]\[ x = 7.5 \][/tex]
5. Calculate [tex]\( CB \)[/tex]:
- Since [tex]\( CB = x + 3 \)[/tex]:
[tex]\[ CB = 7.5 + 3 = 10.5 \][/tex]
So, the distances are:
[tex]\[ AC = 7.5 \, \text{cm} \][/tex]
[tex]\[ CB = 10.5 \, \text{cm} \][/tex]
Therefore, the lengths are:
[tex]\[ AC = 7.5 \, \text{cm}, \quad CB = 10.5 \, \text{cm} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.