Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's solve this step-by-step:
### Problem Statement
We have the duration of voicemails which are normally distributed with the following parameters:
- Mean duration ([tex]\(\mu\)[/tex]) = 30 seconds
- Standard deviation ([tex]\(\sigma\)[/tex]) = 10 seconds
We need to find the probability that a given voicemail duration is between 20 and 50 seconds.
### 1. Understanding the Normal Distribution
The normal distribution is characterized by the mean (average) and standard deviation, and the [tex]\(68\%-95\%-99.7\%\)[/tex] rule helps us understand the spread of data in a normal distribution:
- About 68% of the data falls within 1 standard deviation from the mean.
- About 95% of the data falls within 2 standard deviations from the mean.
- About 99.7% of the data falls within 3 standard deviations from the mean.
### 2. Finding [tex]\(z\)[/tex]-Scores
To find the probability, we first need to convert our boundaries (20 seconds and 50 seconds) into [tex]\(z\)[/tex]-scores. The [tex]\(z\)[/tex]-score tells us how many standard deviations a particular value is from the mean.
The [tex]\(z\)[/tex]-score is calculated as:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
#### - For the lower bound (20 seconds):
[tex]\[ z_{\text{lower}} = \frac{20 - 30}{10} = \frac{-10}{10} = -1.0 \][/tex]
#### - For the upper bound (50 seconds):
[tex]\[ z_{\text{upper}} = \frac{50 - 30}{10} = \frac{20}{10} = 2.0 \][/tex]
### 3. Applying the [tex]\(68\%-95\%-99.7\%\)[/tex] Rule
Now that we have the [tex]\(z\)[/tex]-scores:
- The lower bound [tex]\(z\)[/tex]-score is [tex]\(-1.0\)[/tex]
- The upper bound [tex]\(z\)[/tex]-score is [tex]\(2.0\)[/tex]
Using the [tex]\(68\%-95\%-99.7\%\)[/tex] rule:
- A [tex]\(z\)[/tex]-score between [tex]\(-1.0\)[/tex] and [tex]\(1.0\)[/tex] covers 68% of the data approximately.
- A [tex]\(z\)[/tex]-score between [tex]\(-2.0\)[/tex] and [tex]\(2.0\)[/tex] covers 95% of the data approximately.
- A [tex]\(z\)[/tex]-score between [tex]\(-3.0\)[/tex] and [tex]\(3.0\)[/tex] covers 99.7% of the data approximately.
Since our range of [tex]\(z\)[/tex]-scores is [tex]\(-1.0\)[/tex] to [tex]\(2.0\)[/tex], we fall into the 95% range. This means the probability that a given voicemail is between 20 and 50 seconds is approximately 95%.
### Conclusion
Therefore, the probability that a given voicemail has a duration between 20 and 50 seconds is 95%.
### Problem Statement
We have the duration of voicemails which are normally distributed with the following parameters:
- Mean duration ([tex]\(\mu\)[/tex]) = 30 seconds
- Standard deviation ([tex]\(\sigma\)[/tex]) = 10 seconds
We need to find the probability that a given voicemail duration is between 20 and 50 seconds.
### 1. Understanding the Normal Distribution
The normal distribution is characterized by the mean (average) and standard deviation, and the [tex]\(68\%-95\%-99.7\%\)[/tex] rule helps us understand the spread of data in a normal distribution:
- About 68% of the data falls within 1 standard deviation from the mean.
- About 95% of the data falls within 2 standard deviations from the mean.
- About 99.7% of the data falls within 3 standard deviations from the mean.
### 2. Finding [tex]\(z\)[/tex]-Scores
To find the probability, we first need to convert our boundaries (20 seconds and 50 seconds) into [tex]\(z\)[/tex]-scores. The [tex]\(z\)[/tex]-score tells us how many standard deviations a particular value is from the mean.
The [tex]\(z\)[/tex]-score is calculated as:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
#### - For the lower bound (20 seconds):
[tex]\[ z_{\text{lower}} = \frac{20 - 30}{10} = \frac{-10}{10} = -1.0 \][/tex]
#### - For the upper bound (50 seconds):
[tex]\[ z_{\text{upper}} = \frac{50 - 30}{10} = \frac{20}{10} = 2.0 \][/tex]
### 3. Applying the [tex]\(68\%-95\%-99.7\%\)[/tex] Rule
Now that we have the [tex]\(z\)[/tex]-scores:
- The lower bound [tex]\(z\)[/tex]-score is [tex]\(-1.0\)[/tex]
- The upper bound [tex]\(z\)[/tex]-score is [tex]\(2.0\)[/tex]
Using the [tex]\(68\%-95\%-99.7\%\)[/tex] rule:
- A [tex]\(z\)[/tex]-score between [tex]\(-1.0\)[/tex] and [tex]\(1.0\)[/tex] covers 68% of the data approximately.
- A [tex]\(z\)[/tex]-score between [tex]\(-2.0\)[/tex] and [tex]\(2.0\)[/tex] covers 95% of the data approximately.
- A [tex]\(z\)[/tex]-score between [tex]\(-3.0\)[/tex] and [tex]\(3.0\)[/tex] covers 99.7% of the data approximately.
Since our range of [tex]\(z\)[/tex]-scores is [tex]\(-1.0\)[/tex] to [tex]\(2.0\)[/tex], we fall into the 95% range. This means the probability that a given voicemail is between 20 and 50 seconds is approximately 95%.
### Conclusion
Therefore, the probability that a given voicemail has a duration between 20 and 50 seconds is 95%.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.