Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the value of the fourth term in a geometric sequence, we use the formula for the [tex]\(n\)[/tex]-th term of a geometric sequence:
[tex]\[ a_n = a_1 \cdot r^{(n-1)} \][/tex]
Given:
- The first term [tex]\(a_1 = 15\)[/tex]
- The common ratio [tex]\(r = \frac{1}{3}\)[/tex]
- We need to find the fourth term, so [tex]\(n = 4\)[/tex]
Substitute the values into the formula:
[tex]\[ a_4 = 15 \cdot \left(\frac{1}{3}\right)^{(4-1)} \][/tex]
[tex]\[ a_4 = 15 \cdot \left(\frac{1}{3}\right)^{3} \][/tex]
[tex]\[ a_4 = 15 \cdot \frac{1}{27} \][/tex]
Now, multiply the terms:
[tex]\[ a_4 = \frac{15}{27} \][/tex]
To express [tex]\(\frac{15}{27}\)[/tex] as a simplified fraction, we find the greatest common divisor (GCD) of the numerator and denominator. The GCD of 15 and 27 is 3.
Divide the numerator and the denominator by their GCD:
[tex]\[ \frac{15}{27} = \frac{15 \div 3}{27 \div 3} = \frac{5}{9} \][/tex]
Therefore, the value of the fourth term in the geometric sequence is [tex]\(\boxed{\frac{5}{9}}\)[/tex].
[tex]\[ a_n = a_1 \cdot r^{(n-1)} \][/tex]
Given:
- The first term [tex]\(a_1 = 15\)[/tex]
- The common ratio [tex]\(r = \frac{1}{3}\)[/tex]
- We need to find the fourth term, so [tex]\(n = 4\)[/tex]
Substitute the values into the formula:
[tex]\[ a_4 = 15 \cdot \left(\frac{1}{3}\right)^{(4-1)} \][/tex]
[tex]\[ a_4 = 15 \cdot \left(\frac{1}{3}\right)^{3} \][/tex]
[tex]\[ a_4 = 15 \cdot \frac{1}{27} \][/tex]
Now, multiply the terms:
[tex]\[ a_4 = \frac{15}{27} \][/tex]
To express [tex]\(\frac{15}{27}\)[/tex] as a simplified fraction, we find the greatest common divisor (GCD) of the numerator and denominator. The GCD of 15 and 27 is 3.
Divide the numerator and the denominator by their GCD:
[tex]\[ \frac{15}{27} = \frac{15 \div 3}{27 \div 3} = \frac{5}{9} \][/tex]
Therefore, the value of the fourth term in the geometric sequence is [tex]\(\boxed{\frac{5}{9}}\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.