Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To graph the function [tex]\( f(x) = |\sqrt[3]{x} + 2x| + 12 \)[/tex], let's analyze it step by step.
### Vertex of the Graph
1. Understanding the Function Structure: The function consists of an absolute value term and a constant. The general form is [tex]\( f(x) = |g(x)| + c \)[/tex], where [tex]\( g(x) = \sqrt[3]{x} + 2x \)[/tex] and [tex]\( c = 12 \)[/tex].
2. Finding the Vertex: The vertex of such a function occurs at the point where the expression inside the absolute value [tex]\( g(x) \)[/tex] is zero, since this is where the minimum value of the absolute value function occurs.
3. Solving [tex]\( g(x) = 0 \)[/tex]:
- We solve [tex]\( \sqrt[3]{x} + 2x = 0 \)[/tex].
- Solving [tex]\( \sqrt[3]{x} = -2x \)[/tex].
- Raising both sides to the power of 3: [tex]\( x = -8x^3 \)[/tex].
- Rearranging the equation: [tex]\( x^3 + 8x = 0 \)[/tex], which simplifies to [tex]\( x(x^2 + 8) = 0 \)[/tex].
This equation has solutions:
- [tex]\( x = 0 \)[/tex] because [tex]\( x^2 + 8 \)[/tex] has no real roots.
4. Vertex Coordinates: Substituting [tex]\( x = 0 \)[/tex] back into the original function:
- [tex]\( f(0) = | \sqrt[3]{0} + 2 \cdot 0 | + 12 \)[/tex].
- This simplifies to [tex]\( f(0) = |0| + 12 = 12 \)[/tex].
So, the vertex is at [tex]\( (0, 12) \)[/tex].
### Direction in which the Graph Opens
The graph opens upwards because the absolute value function results in a non-negative output which increases as we move away from the vertex along both directions of the x-axis. The constant part [tex]\( 12 \)[/tex] ensures that all values of [tex]\( f(x) \)[/tex] are greater than or equal to 12.
Thus, the answers are:
- The vertex of the graph is at [tex]\( (0, 12) \)[/tex].
- The direction in which the graph opens is upwards.
Selections:
- [tex]\(\square\)[/tex] = (0, 12)
- [tex]\(\square\)[/tex] = upwards
### Vertex of the Graph
1. Understanding the Function Structure: The function consists of an absolute value term and a constant. The general form is [tex]\( f(x) = |g(x)| + c \)[/tex], where [tex]\( g(x) = \sqrt[3]{x} + 2x \)[/tex] and [tex]\( c = 12 \)[/tex].
2. Finding the Vertex: The vertex of such a function occurs at the point where the expression inside the absolute value [tex]\( g(x) \)[/tex] is zero, since this is where the minimum value of the absolute value function occurs.
3. Solving [tex]\( g(x) = 0 \)[/tex]:
- We solve [tex]\( \sqrt[3]{x} + 2x = 0 \)[/tex].
- Solving [tex]\( \sqrt[3]{x} = -2x \)[/tex].
- Raising both sides to the power of 3: [tex]\( x = -8x^3 \)[/tex].
- Rearranging the equation: [tex]\( x^3 + 8x = 0 \)[/tex], which simplifies to [tex]\( x(x^2 + 8) = 0 \)[/tex].
This equation has solutions:
- [tex]\( x = 0 \)[/tex] because [tex]\( x^2 + 8 \)[/tex] has no real roots.
4. Vertex Coordinates: Substituting [tex]\( x = 0 \)[/tex] back into the original function:
- [tex]\( f(0) = | \sqrt[3]{0} + 2 \cdot 0 | + 12 \)[/tex].
- This simplifies to [tex]\( f(0) = |0| + 12 = 12 \)[/tex].
So, the vertex is at [tex]\( (0, 12) \)[/tex].
### Direction in which the Graph Opens
The graph opens upwards because the absolute value function results in a non-negative output which increases as we move away from the vertex along both directions of the x-axis. The constant part [tex]\( 12 \)[/tex] ensures that all values of [tex]\( f(x) \)[/tex] are greater than or equal to 12.
Thus, the answers are:
- The vertex of the graph is at [tex]\( (0, 12) \)[/tex].
- The direction in which the graph opens is upwards.
Selections:
- [tex]\(\square\)[/tex] = (0, 12)
- [tex]\(\square\)[/tex] = upwards
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.