Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's go through the steps to find the antiderivative [tex]\( F(v) \)[/tex] of the function [tex]\( f(v) = \frac{3}{4} \sec(v) \tan(v) \)[/tex] that satisfies the condition [tex]\( F(0) = 3 \)[/tex].
### Step 1: Find the Antiderivative
First, we need to find the indefinite integral of the function [tex]\( f(v) \)[/tex]:
[tex]\[ \int \frac{3}{4} \sec(v) \tan(v) \, dv \][/tex]
We know that the derivative of [tex]\( \sec(v) \)[/tex] is [tex]\( \sec(v) \tan(v) \)[/tex], so integrating [tex]\( \sec(v) \tan(v) \)[/tex] gives [tex]\( \sec(v) \)[/tex]. Thus:
[tex]\[ \int \sec(v) \tan(v) \, dv = \sec(v) \][/tex]
Considering the constant multiplier [tex]\(\frac{3}{4}\)[/tex], the integral becomes:
[tex]\[ \int \frac{3}{4} \sec(v) \tan(v) \, dv = \frac{3}{4} \sec(v) \][/tex]
Thus, the antiderivative [tex]\( F(v) \)[/tex] can be written as:
[tex]\[ F(v) = \frac{3}{4} \sec(v) + C \][/tex]
### Step 2: Determine the Constant of Integration
To determine the constant [tex]\( C \)[/tex], we use the condition [tex]\( F(0) = 3 \)[/tex]:
[tex]\[ F(0) = \frac{3}{4} \sec(0) + C = 3 \][/tex]
We know that [tex]\( \sec(0) = 1 \)[/tex], so:
[tex]\[ \frac{3}{4} \cdot 1 + C = 3 \][/tex]
This simplifies to:
[tex]\[ \frac{3}{4} + C = 3 \][/tex]
Subtract [tex]\(\frac{3}{4}\)[/tex] from both sides to solve for [tex]\( C \)[/tex]:
[tex]\[ C = 3 - \frac{3}{4} = \frac{12}{4} - \frac{3}{4} = \frac{9}{4} = 2.25 \][/tex]
### Step 3: Write the Final Antiderivative
Now that we have determined [tex]\( C = 2.25 \)[/tex], we can write the final expression for the antiderivative [tex]\( F(v) \)[/tex]:
[tex]\[ F(v) = \frac{3}{4} \sec(v) + 2.25 \][/tex]
Thus, the antiderivative [tex]\( F \)[/tex] that satisfies the given condition is:
[tex]\[ F(v) = 2.25 + \frac{3}{4} \sec(v) \][/tex]
So we fill in the blank:
[tex]\[ F(v) = \boxed{2.25 + \frac{3}{4} \sec(v)} \][/tex]
### Step 1: Find the Antiderivative
First, we need to find the indefinite integral of the function [tex]\( f(v) \)[/tex]:
[tex]\[ \int \frac{3}{4} \sec(v) \tan(v) \, dv \][/tex]
We know that the derivative of [tex]\( \sec(v) \)[/tex] is [tex]\( \sec(v) \tan(v) \)[/tex], so integrating [tex]\( \sec(v) \tan(v) \)[/tex] gives [tex]\( \sec(v) \)[/tex]. Thus:
[tex]\[ \int \sec(v) \tan(v) \, dv = \sec(v) \][/tex]
Considering the constant multiplier [tex]\(\frac{3}{4}\)[/tex], the integral becomes:
[tex]\[ \int \frac{3}{4} \sec(v) \tan(v) \, dv = \frac{3}{4} \sec(v) \][/tex]
Thus, the antiderivative [tex]\( F(v) \)[/tex] can be written as:
[tex]\[ F(v) = \frac{3}{4} \sec(v) + C \][/tex]
### Step 2: Determine the Constant of Integration
To determine the constant [tex]\( C \)[/tex], we use the condition [tex]\( F(0) = 3 \)[/tex]:
[tex]\[ F(0) = \frac{3}{4} \sec(0) + C = 3 \][/tex]
We know that [tex]\( \sec(0) = 1 \)[/tex], so:
[tex]\[ \frac{3}{4} \cdot 1 + C = 3 \][/tex]
This simplifies to:
[tex]\[ \frac{3}{4} + C = 3 \][/tex]
Subtract [tex]\(\frac{3}{4}\)[/tex] from both sides to solve for [tex]\( C \)[/tex]:
[tex]\[ C = 3 - \frac{3}{4} = \frac{12}{4} - \frac{3}{4} = \frac{9}{4} = 2.25 \][/tex]
### Step 3: Write the Final Antiderivative
Now that we have determined [tex]\( C = 2.25 \)[/tex], we can write the final expression for the antiderivative [tex]\( F(v) \)[/tex]:
[tex]\[ F(v) = \frac{3}{4} \sec(v) + 2.25 \][/tex]
Thus, the antiderivative [tex]\( F \)[/tex] that satisfies the given condition is:
[tex]\[ F(v) = 2.25 + \frac{3}{4} \sec(v) \][/tex]
So we fill in the blank:
[tex]\[ F(v) = \boxed{2.25 + \frac{3}{4} \sec(v)} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.