Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the integer values of [tex]\( n \)[/tex] that satisfy the inequality [tex]\( -15 < 3n \leq 6 \)[/tex], we will follow a step-by-step approach.
1. Break down the inequality into two parts:
[tex]\[-15 < 3n\][/tex]
and
[tex]\[3n \leq 6\][/tex]
2. Solve the first part of the inequality:
[tex]\[-15 < 3n\][/tex]
To isolate [tex]\( n \)[/tex], divide both sides by [tex]\( 3 \)[/tex]:
[tex]\[ \frac{-15}{3} < \frac{3n}{3} \implies -5 < n \][/tex]
This simplifies to:
[tex]\[ n > -5 \][/tex]
3. Solve the second part of the inequality:
[tex]\[3n \leq 6\][/tex]
Again, isolate [tex]\( n \)[/tex] by dividing both sides by [tex]\( 3 \)[/tex]:
[tex]\[ \frac{3n}{3} \leq \frac{6}{3} \implies n \leq 2 \][/tex]
4. Combine the results of both inequalities:
We now have:
[tex]\[ -5 < n \leq 2 \][/tex]
5. Interpret [tex]\( n \)[/tex] as an integer:
Since [tex]\( n \)[/tex] must be an integer, we need to list all the integer values that fall within the range:
[tex]\[ -5 < n \leq 2 \][/tex]
This means [tex]\( n \)[/tex] can be any integer greater than [tex]\(-5\)[/tex] and less than or equal to [tex]\( 2 \)[/tex].
The integer values of [tex]\( n \)[/tex] that satisfy the inequality are:
[tex]\[ n = -4, -3, -2, -1, 0, 1, 2 \][/tex]
So, the values of [tex]\( n \)[/tex] that satisfy [tex]\( -15 < 3n \leq 6 \)[/tex] are [tex]\( -4, -3, -2, -1, 0, 1, 2 \)[/tex].
1. Break down the inequality into two parts:
[tex]\[-15 < 3n\][/tex]
and
[tex]\[3n \leq 6\][/tex]
2. Solve the first part of the inequality:
[tex]\[-15 < 3n\][/tex]
To isolate [tex]\( n \)[/tex], divide both sides by [tex]\( 3 \)[/tex]:
[tex]\[ \frac{-15}{3} < \frac{3n}{3} \implies -5 < n \][/tex]
This simplifies to:
[tex]\[ n > -5 \][/tex]
3. Solve the second part of the inequality:
[tex]\[3n \leq 6\][/tex]
Again, isolate [tex]\( n \)[/tex] by dividing both sides by [tex]\( 3 \)[/tex]:
[tex]\[ \frac{3n}{3} \leq \frac{6}{3} \implies n \leq 2 \][/tex]
4. Combine the results of both inequalities:
We now have:
[tex]\[ -5 < n \leq 2 \][/tex]
5. Interpret [tex]\( n \)[/tex] as an integer:
Since [tex]\( n \)[/tex] must be an integer, we need to list all the integer values that fall within the range:
[tex]\[ -5 < n \leq 2 \][/tex]
This means [tex]\( n \)[/tex] can be any integer greater than [tex]\(-5\)[/tex] and less than or equal to [tex]\( 2 \)[/tex].
The integer values of [tex]\( n \)[/tex] that satisfy the inequality are:
[tex]\[ n = -4, -3, -2, -1, 0, 1, 2 \][/tex]
So, the values of [tex]\( n \)[/tex] that satisfy [tex]\( -15 < 3n \leq 6 \)[/tex] are [tex]\( -4, -3, -2, -1, 0, 1, 2 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.