Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To make a neat sketch of the graph for [tex]\( f(x) = 3\sin(x) \)[/tex] for [tex]\( 0^\circ < x < 360^\circ \)[/tex], follow these steps:
### Step-by-Step Solution
1. Understand the Function:
- The function [tex]\( f(x) = 3\sin(x) \)[/tex] is a scaled sine function.
- The sine function [tex]\( \sin(x) \)[/tex] oscillates between -1 and 1.
- By multiplying by 3, the amplitude of the function changes to oscillate between -3 and 3.
2. Identify Key Points:
- The sine function has specific points where the value is known and these are key to sketching the graph:
- [tex]\( \sin(0^\circ) = 0 \)[/tex]
- [tex]\( \sin(90^\circ) = 1 \)[/tex]
- [tex]\( \sin(180^\circ) = 0 \)[/tex]
- [tex]\( \sin(270^\circ) = -1 \)[/tex]
- [tex]\( \sin(360^\circ) = 0 \)[/tex]
3. Scaling Key Points:
- Multiply the sine values by 3 to fit our function:
- [tex]\( f(0^\circ) = 3\sin(0^\circ) = 0 \)[/tex]
- [tex]\( f(90^\circ) = 3\sin(90^\circ) = 3 \)[/tex]
- [tex]\( f(180^\circ) = 3\sin(180^\circ) = 0 \)[/tex]
- [tex]\( f(270^\circ) = 3\sin(270^\circ) = -3 \)[/tex]
- [tex]\( f(360^\circ) = 3\sin(360^\circ) = 0 \)[/tex]
4. Plot the Points:
- On graph paper or coordinate axis, plot the points:
- (0, 0)
- (90, 3)
- (180, 0)
- (270, -3)
- (360, 0)
5. Draw the Sine Curve:
- Draw a smooth, continuous curve passing through these points, making sure to follow the typical sinusoidal pattern:
- The curve starts at the origin (0, 0), rises to the maximum point (90, 3), falls back to the axis (180, 0), drops to the minimum point (270, -3), and finally rises back to the axis (360, 0).
6. Indicate Intercepts:
- The x-intercepts are at [tex]\( x = 0^\circ, 180^\circ, \)[/tex] and [tex]\( 360^\circ \)[/tex].
- The y-intercept (since the function starts at the origin) is at [tex]\( y = 0 \)[/tex].
### Sketch
Here's a simple way to think of your sketch:
```
|
3 + /\
| / \
2 + / \
| / \
1 + / \
| / \
0 +-----------------------------
| (0,0) (180,0)
-1 + \
| \
-2 + \
| \
-3 + \ / * Intercepts with the x-axis at [tex]\( x = 0^\circ, 180^\circ, 360^\circ \)[/tex].
| (270,-3)
__|________|________|________|________|____________________|_
0 90 180 270 360 (Degrees)
```
### Summary:
- Amplitude is 3, so the highest point is [tex]\( y = 3 \)[/tex] and the lowest is [tex]\( y = -3 \)[/tex].
- X-intercepts are at [tex]\( x = 0^\circ, 180^\circ, 360^\circ \)[/tex].
- Y-intercept is at [tex]\( y = 0 \)[/tex] (origin).
- The function completes one full cycle from [tex]\( 0^\circ \)[/tex] to [tex]\( 360^\circ \)[/tex].
### Step-by-Step Solution
1. Understand the Function:
- The function [tex]\( f(x) = 3\sin(x) \)[/tex] is a scaled sine function.
- The sine function [tex]\( \sin(x) \)[/tex] oscillates between -1 and 1.
- By multiplying by 3, the amplitude of the function changes to oscillate between -3 and 3.
2. Identify Key Points:
- The sine function has specific points where the value is known and these are key to sketching the graph:
- [tex]\( \sin(0^\circ) = 0 \)[/tex]
- [tex]\( \sin(90^\circ) = 1 \)[/tex]
- [tex]\( \sin(180^\circ) = 0 \)[/tex]
- [tex]\( \sin(270^\circ) = -1 \)[/tex]
- [tex]\( \sin(360^\circ) = 0 \)[/tex]
3. Scaling Key Points:
- Multiply the sine values by 3 to fit our function:
- [tex]\( f(0^\circ) = 3\sin(0^\circ) = 0 \)[/tex]
- [tex]\( f(90^\circ) = 3\sin(90^\circ) = 3 \)[/tex]
- [tex]\( f(180^\circ) = 3\sin(180^\circ) = 0 \)[/tex]
- [tex]\( f(270^\circ) = 3\sin(270^\circ) = -3 \)[/tex]
- [tex]\( f(360^\circ) = 3\sin(360^\circ) = 0 \)[/tex]
4. Plot the Points:
- On graph paper or coordinate axis, plot the points:
- (0, 0)
- (90, 3)
- (180, 0)
- (270, -3)
- (360, 0)
5. Draw the Sine Curve:
- Draw a smooth, continuous curve passing through these points, making sure to follow the typical sinusoidal pattern:
- The curve starts at the origin (0, 0), rises to the maximum point (90, 3), falls back to the axis (180, 0), drops to the minimum point (270, -3), and finally rises back to the axis (360, 0).
6. Indicate Intercepts:
- The x-intercepts are at [tex]\( x = 0^\circ, 180^\circ, \)[/tex] and [tex]\( 360^\circ \)[/tex].
- The y-intercept (since the function starts at the origin) is at [tex]\( y = 0 \)[/tex].
### Sketch
Here's a simple way to think of your sketch:
```
|
3 + /\
| / \
2 + / \
| / \
1 + / \
| / \
0 +-----------------------------
| (0,0) (180,0)
-1 + \
| \
-2 + \
| \
-3 + \ / * Intercepts with the x-axis at [tex]\( x = 0^\circ, 180^\circ, 360^\circ \)[/tex].
| (270,-3)
__|________|________|________|________|____________________|_
0 90 180 270 360 (Degrees)
```
### Summary:
- Amplitude is 3, so the highest point is [tex]\( y = 3 \)[/tex] and the lowest is [tex]\( y = -3 \)[/tex].
- X-intercepts are at [tex]\( x = 0^\circ, 180^\circ, 360^\circ \)[/tex].
- Y-intercept is at [tex]\( y = 0 \)[/tex] (origin).
- The function completes one full cycle from [tex]\( 0^\circ \)[/tex] to [tex]\( 360^\circ \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.