Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the problem step-by-step:
1. Understand the Given Data:
- The radial distance [tex]\( r \)[/tex] from the axis of rotation is given as 34.0 cm.
- This distance needs to be converted to meters for SI units, hence:
[tex]\[ r = 34.0 \, \text{cm} = 0.34 \, \text{m} \][/tex]
- The gravitational acceleration [tex]\( g \)[/tex] is given as 9.8 [tex]\( \text{m/s}^2 \)[/tex].
- The radial acceleration is not to exceed 10.0 times the gravitational acceleration [tex]\( g \)[/tex]:
[tex]\[ \text{Radial acceleration} = 10 \times g = 10 \times 9.8 \, \text{m/s}^2 = 98 \, \text{m/s}^2 \][/tex]
2. Formula for Radial Acceleration:
The radial acceleration in circular motion is given by:
[tex]\[ a_r = \omega^2 \times r \][/tex]
Where:
- [tex]\( a_r \)[/tex] is the radial acceleration.
- [tex]\( \omega \)[/tex] is the angular velocity in radians per second (rad/s).
- [tex]\( r \)[/tex] is the radius in meters.
3. Rearrange the Formula to Solve for [tex]\( \omega \)[/tex]:
Given [tex]\( a_r \)[/tex] and [tex]\( r \)[/tex], we solve for [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{a_r}{r}} \][/tex]
4. Substitute the Known Values:
- [tex]\( a_r = 98 \, \text{m/s}^2 \)[/tex]
- [tex]\( r = 0.34 \, \text{m} \)[/tex]
Thus:
[tex]\[ \omega = \sqrt{\frac{98}{0.34}} \][/tex]
5. Calculate the Angular Velocity [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{98}{0.34}} \approx 16.977 \, \text{rad/s} \][/tex]
Therefore, the angular velocity [tex]\( \omega \)[/tex] of the ice skater, such that the radial acceleration does not exceed 10 times the gravitational acceleration, is approximately [tex]\( 16.98 \, \text{rad/s} \)[/tex].
Here's the summarized information:
- Radius [tex]\( r \)[/tex]: 0.34 meters
- Radial Acceleration [tex]\( a_r \)[/tex]: 98.0 [tex]\( \text{m/s}^2 \)[/tex]
- Angular Velocity [tex]\( \omega \)[/tex]: 16.98 [tex]\( \text{rad/s} \)[/tex]
1. Understand the Given Data:
- The radial distance [tex]\( r \)[/tex] from the axis of rotation is given as 34.0 cm.
- This distance needs to be converted to meters for SI units, hence:
[tex]\[ r = 34.0 \, \text{cm} = 0.34 \, \text{m} \][/tex]
- The gravitational acceleration [tex]\( g \)[/tex] is given as 9.8 [tex]\( \text{m/s}^2 \)[/tex].
- The radial acceleration is not to exceed 10.0 times the gravitational acceleration [tex]\( g \)[/tex]:
[tex]\[ \text{Radial acceleration} = 10 \times g = 10 \times 9.8 \, \text{m/s}^2 = 98 \, \text{m/s}^2 \][/tex]
2. Formula for Radial Acceleration:
The radial acceleration in circular motion is given by:
[tex]\[ a_r = \omega^2 \times r \][/tex]
Where:
- [tex]\( a_r \)[/tex] is the radial acceleration.
- [tex]\( \omega \)[/tex] is the angular velocity in radians per second (rad/s).
- [tex]\( r \)[/tex] is the radius in meters.
3. Rearrange the Formula to Solve for [tex]\( \omega \)[/tex]:
Given [tex]\( a_r \)[/tex] and [tex]\( r \)[/tex], we solve for [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{a_r}{r}} \][/tex]
4. Substitute the Known Values:
- [tex]\( a_r = 98 \, \text{m/s}^2 \)[/tex]
- [tex]\( r = 0.34 \, \text{m} \)[/tex]
Thus:
[tex]\[ \omega = \sqrt{\frac{98}{0.34}} \][/tex]
5. Calculate the Angular Velocity [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{98}{0.34}} \approx 16.977 \, \text{rad/s} \][/tex]
Therefore, the angular velocity [tex]\( \omega \)[/tex] of the ice skater, such that the radial acceleration does not exceed 10 times the gravitational acceleration, is approximately [tex]\( 16.98 \, \text{rad/s} \)[/tex].
Here's the summarized information:
- Radius [tex]\( r \)[/tex]: 0.34 meters
- Radial Acceleration [tex]\( a_r \)[/tex]: 98.0 [tex]\( \text{m/s}^2 \)[/tex]
- Angular Velocity [tex]\( \omega \)[/tex]: 16.98 [tex]\( \text{rad/s} \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.