Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

An ice skater rotates about a vertical axis through the center of her body. Find her angular velocity (in rad/s) if the radial acceleration at a point on the body [tex]r = 34.0 \, \text{cm}[/tex] from the axis of rotation is not to exceed 10.0 times gravitational acceleration [tex]g[/tex].

Sagot :

Sure, let's solve the problem step-by-step:

1. Understand the Given Data:
- The radial distance [tex]\( r \)[/tex] from the axis of rotation is given as 34.0 cm.
- This distance needs to be converted to meters for SI units, hence:
[tex]\[ r = 34.0 \, \text{cm} = 0.34 \, \text{m} \][/tex]
- The gravitational acceleration [tex]\( g \)[/tex] is given as 9.8 [tex]\( \text{m/s}^2 \)[/tex].
- The radial acceleration is not to exceed 10.0 times the gravitational acceleration [tex]\( g \)[/tex]:
[tex]\[ \text{Radial acceleration} = 10 \times g = 10 \times 9.8 \, \text{m/s}^2 = 98 \, \text{m/s}^2 \][/tex]

2. Formula for Radial Acceleration:
The radial acceleration in circular motion is given by:
[tex]\[ a_r = \omega^2 \times r \][/tex]
Where:
- [tex]\( a_r \)[/tex] is the radial acceleration.
- [tex]\( \omega \)[/tex] is the angular velocity in radians per second (rad/s).
- [tex]\( r \)[/tex] is the radius in meters.

3. Rearrange the Formula to Solve for [tex]\( \omega \)[/tex]:
Given [tex]\( a_r \)[/tex] and [tex]\( r \)[/tex], we solve for [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{a_r}{r}} \][/tex]

4. Substitute the Known Values:
- [tex]\( a_r = 98 \, \text{m/s}^2 \)[/tex]
- [tex]\( r = 0.34 \, \text{m} \)[/tex]
Thus:
[tex]\[ \omega = \sqrt{\frac{98}{0.34}} \][/tex]

5. Calculate the Angular Velocity [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{98}{0.34}} \approx 16.977 \, \text{rad/s} \][/tex]

Therefore, the angular velocity [tex]\( \omega \)[/tex] of the ice skater, such that the radial acceleration does not exceed 10 times the gravitational acceleration, is approximately [tex]\( 16.98 \, \text{rad/s} \)[/tex].

Here's the summarized information:

- Radius [tex]\( r \)[/tex]: 0.34 meters
- Radial Acceleration [tex]\( a_r \)[/tex]: 98.0 [tex]\( \text{m/s}^2 \)[/tex]
- Angular Velocity [tex]\( \omega \)[/tex]: 16.98 [tex]\( \text{rad/s} \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.