Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Given the following velocity function of an object moving along a line, find the position function with the given initial position.

[tex]\[ v(t) = 5 \sqrt[3]{t}, \quad s(0) = 1 \][/tex]

The position function is [tex]\( s(t) = \square \)[/tex]


Sagot :

To find the position function [tex]\( s(t) \)[/tex] given the velocity function [tex]\( v(t) = 5 \sqrt[3]{t} \)[/tex] and the initial position [tex]\( s(0) = 1 \)[/tex], follow these steps:

1. Understand the relationship between position, velocity, and time:
- Velocity is the derivative of the position function with respect to time. Therefore, to find the position function from the velocity function, we need to integrate the velocity function.

2. Set up the integral of the velocity function to find the position function:
- The given velocity function is [tex]\( v(t) = 5 \sqrt[3]{t} \)[/tex].
- We need to integrate this function with respect to [tex]\( t \)[/tex]:

[tex]\[ s(t) = \int 5 \sqrt[3]{t} \, dt \][/tex]

3. Rewrite the integrand in a more familiar form for integration:
- Recall that [tex]\( \sqrt[3]{t} \)[/tex] is the same as [tex]\( t^{1/3} \)[/tex]. So the integral becomes:

[tex]\[ s(t) = \int 5 t^{1/3} \, dt \][/tex]

4. Perform the integration:
- To integrate [tex]\( 5 t^{1/3} \)[/tex], we use the power rule of integration [tex]\( \int t^n \, dt = \frac{t^{n+1}}{n+1} + C \)[/tex]:

[tex]\[ s(t) = 5 \int t^{1/3} \, dt = 5 \left( \frac{t^{(1/3) + 1}}{(1/3) + 1} \right) + C \][/tex]

- Simplify the exponent and the fraction:

[tex]\[ t^{(1/3) + 1} = t^{4/3} \\ \frac{1}{(1/3) + 1} = \frac{1}{4/3} = \frac{3}{4} \][/tex]

- So the integral becomes:

[tex]\[ s(t) = 5 \left( \frac{3}{4} t^{4/3} \right) + C = \frac{15}{4} t^{4/3} + C \][/tex]

5. Determine the constant of integration [tex]\( C \)[/tex] using the initial condition [tex]\( s(0) = 1 \)[/tex]:
- Plug in [tex]\( t = 0 \)[/tex] and [tex]\( s(0) = 1 \)[/tex] into the position function:

[tex]\[ 1 = \frac{15}{4} (0)^{4/3} + C \\ 1 = 0 + C \\ C = 1 \][/tex]

6. Substitute the constant [tex]\( C \)[/tex] back into the position function:

[tex]\[ s(t) = \frac{15}{4} t^{4/3} + 1 \][/tex]

7. Express the position function in the required form:

[tex]\[ s(t) = 3.75 t^{4/3} + 1 \][/tex]

Thus, the position function is:

[tex]\[ s(t) = 3.75 t^{4/3} + 1 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.