Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which value of [tex]\( t \)[/tex] makes the two matrices inverses of each other, we need to verify if the product of the two matrices results in the identity matrix. We will consider the given matrices:
[tex]\[ A = \begin{pmatrix} -4 & 6 \\ 3 & -4 \end{pmatrix} \][/tex]
and
[tex]\[ B = \begin{pmatrix} 2 & 3 \\ 1.5 & 4 \end{pmatrix} \][/tex]
The problem specifies testing specific values for [tex]\( t \)[/tex]. However, let's first check the product of [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
Perform matrix multiplication:
[tex]\[ A \cdot B = \begin{pmatrix} -4 & 6 \\ 3 & -4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1.5 & 4 \end{pmatrix} \][/tex]
Calculate element-wise:
1. First row, first column:
[tex]\[ (-4 \cdot 2) + (6 \cdot 1.5) = -8 + 9 = 1 \][/tex]
2. First row, second column:
[tex]\[ (-4 \cdot 3) + (6 \cdot 4) = -12 + 24 = 12 \][/tex]
3. Second row, first column:
[tex]\[ (3 \cdot 2) + (-4 \cdot 1.5) = 6 - 6 = 0 \][/tex]
4. Second row, second column:
[tex]\[ (3 \cdot 3) + (-4 \cdot 4) = 9 - 16 = -7 \][/tex]
This forms the resultant matrix:
[tex]\[ A \cdot B = \begin{pmatrix} 1 & 12 \\ 0 & -7 \end{pmatrix} \][/tex]
For [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be inverses of each other, this product should be the identity matrix:
[tex]\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
Upon examining the resultant matrix, it is evident that:
[tex]\[ \begin{pmatrix} 1 & 12 \\ 0 & -7 \end{pmatrix} \][/tex]
is not the identity matrix.
Thus, matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are not inverses of each other under any normal circumstances. Hence, none of the provided options ([tex]\(-3, -2, 2, 3\)[/tex]) can make these matrices inverses of each other.
So, the final answer is:
[tex]\[ None \text{ of the values make the matrices inverses of each other.} \][/tex]
[tex]\[ A = \begin{pmatrix} -4 & 6 \\ 3 & -4 \end{pmatrix} \][/tex]
and
[tex]\[ B = \begin{pmatrix} 2 & 3 \\ 1.5 & 4 \end{pmatrix} \][/tex]
The problem specifies testing specific values for [tex]\( t \)[/tex]. However, let's first check the product of [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
Perform matrix multiplication:
[tex]\[ A \cdot B = \begin{pmatrix} -4 & 6 \\ 3 & -4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1.5 & 4 \end{pmatrix} \][/tex]
Calculate element-wise:
1. First row, first column:
[tex]\[ (-4 \cdot 2) + (6 \cdot 1.5) = -8 + 9 = 1 \][/tex]
2. First row, second column:
[tex]\[ (-4 \cdot 3) + (6 \cdot 4) = -12 + 24 = 12 \][/tex]
3. Second row, first column:
[tex]\[ (3 \cdot 2) + (-4 \cdot 1.5) = 6 - 6 = 0 \][/tex]
4. Second row, second column:
[tex]\[ (3 \cdot 3) + (-4 \cdot 4) = 9 - 16 = -7 \][/tex]
This forms the resultant matrix:
[tex]\[ A \cdot B = \begin{pmatrix} 1 & 12 \\ 0 & -7 \end{pmatrix} \][/tex]
For [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be inverses of each other, this product should be the identity matrix:
[tex]\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
Upon examining the resultant matrix, it is evident that:
[tex]\[ \begin{pmatrix} 1 & 12 \\ 0 & -7 \end{pmatrix} \][/tex]
is not the identity matrix.
Thus, matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are not inverses of each other under any normal circumstances. Hence, none of the provided options ([tex]\(-3, -2, 2, 3\)[/tex]) can make these matrices inverses of each other.
So, the final answer is:
[tex]\[ None \text{ of the values make the matrices inverses of each other.} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.