Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the problem of finding [tex]\(\theta\)[/tex] to the nearest tenth of a degree given [tex]\(\sin \theta = -0.5446\)[/tex] and [tex]\(\theta\)[/tex] in the third quadrant (QIII), we'll follow these steps:
1. Find the reference angle:
The reference angle associated with [tex]\(\sin \theta = -0.5446\)[/tex] is the angle whose sine value is 0.5446.
Using a calculator to find the inverse sine (arcsin) of 0.5446, we get:
[tex]\[ \theta_{\text{reference}} \approx -32.9973^\circ \][/tex]
2. Adjust for the third quadrant:
Angles in the third quadrant range from [tex]\(180^\circ\)[/tex] to [tex]\(270^\circ\)[/tex]. Since our initial result is negative and [tex]\(\sin \theta\)[/tex] is negative in QIII, we need to find the equivalent angle in QIII.
The equivalent angle in QIII can be determined by using the fact that [tex]\(\sin(180^\circ + \theta_{\text{reference}})\)[/tex] will match [tex]\(\sin \theta\)[/tex]:
[tex]\[ \theta = 180^\circ - (-32.9973^\circ) \][/tex]
3. Calculate the angle in QIII:
[tex]\[ \theta = 180^\circ + 32.9973^\circ = 212.9973^\circ \][/tex]
4. Round to the nearest tenth:
[tex]\[ \theta \approx 213.0^\circ \][/tex]
Thus, the angle [tex]\(\theta\)[/tex] in the third quadrant where [tex]\(0^\circ < \theta < 360^\circ\)[/tex] and [tex]\(\sin \theta = -0.5446\)[/tex] is approximately [tex]\(213.0^\circ\)[/tex].
1. Find the reference angle:
The reference angle associated with [tex]\(\sin \theta = -0.5446\)[/tex] is the angle whose sine value is 0.5446.
Using a calculator to find the inverse sine (arcsin) of 0.5446, we get:
[tex]\[ \theta_{\text{reference}} \approx -32.9973^\circ \][/tex]
2. Adjust for the third quadrant:
Angles in the third quadrant range from [tex]\(180^\circ\)[/tex] to [tex]\(270^\circ\)[/tex]. Since our initial result is negative and [tex]\(\sin \theta\)[/tex] is negative in QIII, we need to find the equivalent angle in QIII.
The equivalent angle in QIII can be determined by using the fact that [tex]\(\sin(180^\circ + \theta_{\text{reference}})\)[/tex] will match [tex]\(\sin \theta\)[/tex]:
[tex]\[ \theta = 180^\circ - (-32.9973^\circ) \][/tex]
3. Calculate the angle in QIII:
[tex]\[ \theta = 180^\circ + 32.9973^\circ = 212.9973^\circ \][/tex]
4. Round to the nearest tenth:
[tex]\[ \theta \approx 213.0^\circ \][/tex]
Thus, the angle [tex]\(\theta\)[/tex] in the third quadrant where [tex]\(0^\circ < \theta < 360^\circ\)[/tex] and [tex]\(\sin \theta = -0.5446\)[/tex] is approximately [tex]\(213.0^\circ\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.