Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the gravitational force between you and your textbook, we'll use Newton's Law of Gravitation, which is given by the formula:
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2/\text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is your mass, [tex]\( 72 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of the textbook, [tex]\( 3.7 \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the distance between you and the textbook, [tex]\( 0.33 \, \text{m} \)[/tex]
Now we'll plug these values into the formula step-by-step.
1. Calculate the product of the masses:
[tex]\[ m_1 \times m_2 = 72 \, \text{kg} \times 3.7 \, \text{kg} = 266.4 \, \text{kg}^2 \][/tex]
2. Calculate the square of the distance:
[tex]\[ r^2 = (0.33 \, \text{m})^2 = 0.1089 \, \text{m}^2 \][/tex]
3. Plug into the formula:
[tex]\[ F_{\text{gravity}} = \frac{6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2/\text{kg}^2 \times 266.4 \, \text{kg}^2}{0.1089 \, \text{m}^2} \][/tex]
4. Multiply the constant G by the product of the masses:
[tex]\[ 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2/\text{kg}^2 \times 266.4 \, \text{kg}^2 = 1.776408 \times 10^{-8} \, \text{N} \cdot \text{m}^2 \][/tex]
5. Divide by the square of the distance:
[tex]\[ \frac{1.776408 \times 10^{-8} \, \text{N} \cdot \text{m}^2}{0.1089 \, \text{m}^2} \approx 1.631669 \times 10^{-7} \, \text{N} \][/tex]
Therefore, the gravitational force between you and your textbook is approximately:
[tex]\[ 1.63 \times 10^{-7} \, \text{N} \][/tex]
So the correct answer is:
[tex]\[ \text{B. } 1.63 \times 10^{-7} \, \text{N} \][/tex]
[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2/\text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is your mass, [tex]\( 72 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of the textbook, [tex]\( 3.7 \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the distance between you and the textbook, [tex]\( 0.33 \, \text{m} \)[/tex]
Now we'll plug these values into the formula step-by-step.
1. Calculate the product of the masses:
[tex]\[ m_1 \times m_2 = 72 \, \text{kg} \times 3.7 \, \text{kg} = 266.4 \, \text{kg}^2 \][/tex]
2. Calculate the square of the distance:
[tex]\[ r^2 = (0.33 \, \text{m})^2 = 0.1089 \, \text{m}^2 \][/tex]
3. Plug into the formula:
[tex]\[ F_{\text{gravity}} = \frac{6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2/\text{kg}^2 \times 266.4 \, \text{kg}^2}{0.1089 \, \text{m}^2} \][/tex]
4. Multiply the constant G by the product of the masses:
[tex]\[ 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2/\text{kg}^2 \times 266.4 \, \text{kg}^2 = 1.776408 \times 10^{-8} \, \text{N} \cdot \text{m}^2 \][/tex]
5. Divide by the square of the distance:
[tex]\[ \frac{1.776408 \times 10^{-8} \, \text{N} \cdot \text{m}^2}{0.1089 \, \text{m}^2} \approx 1.631669 \times 10^{-7} \, \text{N} \][/tex]
Therefore, the gravitational force between you and your textbook is approximately:
[tex]\[ 1.63 \times 10^{-7} \, \text{N} \][/tex]
So the correct answer is:
[tex]\[ \text{B. } 1.63 \times 10^{-7} \, \text{N} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.