At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

If your mass is 72 kg, your textbook's mass is 3.7 kg, and you and your textbook are separated by a distance of 0.33 m, what is the gravitational force between you and your textbook?

Newton's law of gravitation is:

[tex]\[ F_{\text{gravity}} = \frac{G m_1 m_2}{r^2} \][/tex]

The gravitational constant [tex]\( G \)[/tex] is [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex].

A. [tex]\( 5.38 \times 10^{-8} \, \text{N} \)[/tex]

B. [tex]\( 1.63 \times 10^{-7} \, \text{N} \)[/tex]

C. [tex]\( 2.45 \times 10^3 \, \text{N} \)[/tex]

D. [tex]\( 4.94 \times 10^{-7} \, \text{N} \)[/tex]


Sagot :

To determine the gravitational force between you and your textbook, we'll use Newton's Law of Gravitation, which is given by the formula:

[tex]\[ F_{\text{gravity}} = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]

Where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2/\text{kg}^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is your mass, [tex]\( 72 \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of the textbook, [tex]\( 3.7 \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the distance between you and the textbook, [tex]\( 0.33 \, \text{m} \)[/tex]

Now we'll plug these values into the formula step-by-step.

1. Calculate the product of the masses:

[tex]\[ m_1 \times m_2 = 72 \, \text{kg} \times 3.7 \, \text{kg} = 266.4 \, \text{kg}^2 \][/tex]

2. Calculate the square of the distance:

[tex]\[ r^2 = (0.33 \, \text{m})^2 = 0.1089 \, \text{m}^2 \][/tex]

3. Plug into the formula:

[tex]\[ F_{\text{gravity}} = \frac{6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2/\text{kg}^2 \times 266.4 \, \text{kg}^2}{0.1089 \, \text{m}^2} \][/tex]

4. Multiply the constant G by the product of the masses:

[tex]\[ 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2/\text{kg}^2 \times 266.4 \, \text{kg}^2 = 1.776408 \times 10^{-8} \, \text{N} \cdot \text{m}^2 \][/tex]

5. Divide by the square of the distance:

[tex]\[ \frac{1.776408 \times 10^{-8} \, \text{N} \cdot \text{m}^2}{0.1089 \, \text{m}^2} \approx 1.631669 \times 10^{-7} \, \text{N} \][/tex]

Therefore, the gravitational force between you and your textbook is approximately:

[tex]\[ 1.63 \times 10^{-7} \, \text{N} \][/tex]

So the correct answer is:

[tex]\[ \text{B. } 1.63 \times 10^{-7} \, \text{N} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.