Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To identify the base-conjugate acid pair in the given balanced equation, we need to understand the concept of acids and bases in the Bronsted-Lowry sense. According to the Bronsted-Lowry theory, an acid is a proton (H[tex]\(^+\)[/tex]) donor, and a base is a proton acceptor. A conjugate acid is formed when the base gains a proton, and a conjugate base is what remains after the acid has donated a proton.
The given equation is:
[tex]\[ NH_3 + HNO_3 \rightarrow NH_4^+ + NO_3^- \][/tex]
Let's analyze each component:
1. Identify the reactants and products:
- [tex]\( NH_3 \)[/tex] is ammonia.
- [tex]\( HNO_3 \)[/tex] is nitric acid.
- [tex]\( NH_4^+ \)[/tex] is the ammonium ion.
- [tex]\( NO_3^- \)[/tex] is the nitrate ion.
2. Determine proton transfer:
- [tex]\( NH_3 \)[/tex] becomes [tex]\( NH_4^+ \)[/tex]. This means [tex]\( NH_3 \)[/tex] accepts a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( NH_3 \)[/tex] acts as a base, and [tex]\( NH_4^+ \)[/tex] is its conjugate acid.
- [tex]\( HNO_3 \)[/tex] becomes [tex]\( NO_3^- \)[/tex]. This means [tex]\( HNO_3 \)[/tex] donates a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( HNO_3 \)[/tex] acts as an acid, and [tex]\( NO_3^- \)[/tex] is its conjugate base.
3. Match the pairs:
- The pair [tex]\( NH_3 \)[/tex] (base) and [tex]\( NH_4^+ \)[/tex] (conjugate acid) forms a base-conjugate acid pair.
- The pair [tex]\( HNO_3 \)[/tex] (acid) and [tex]\( NO_3^- \)[/tex] (conjugate base) forms an acid-conjugate base pair.
Therefore, the correct base-conjugate acid pair in the given balanced equation is:
[tex]\[ NH_3 / NH_4^+ \][/tex]
The given equation is:
[tex]\[ NH_3 + HNO_3 \rightarrow NH_4^+ + NO_3^- \][/tex]
Let's analyze each component:
1. Identify the reactants and products:
- [tex]\( NH_3 \)[/tex] is ammonia.
- [tex]\( HNO_3 \)[/tex] is nitric acid.
- [tex]\( NH_4^+ \)[/tex] is the ammonium ion.
- [tex]\( NO_3^- \)[/tex] is the nitrate ion.
2. Determine proton transfer:
- [tex]\( NH_3 \)[/tex] becomes [tex]\( NH_4^+ \)[/tex]. This means [tex]\( NH_3 \)[/tex] accepts a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( NH_3 \)[/tex] acts as a base, and [tex]\( NH_4^+ \)[/tex] is its conjugate acid.
- [tex]\( HNO_3 \)[/tex] becomes [tex]\( NO_3^- \)[/tex]. This means [tex]\( HNO_3 \)[/tex] donates a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( HNO_3 \)[/tex] acts as an acid, and [tex]\( NO_3^- \)[/tex] is its conjugate base.
3. Match the pairs:
- The pair [tex]\( NH_3 \)[/tex] (base) and [tex]\( NH_4^+ \)[/tex] (conjugate acid) forms a base-conjugate acid pair.
- The pair [tex]\( HNO_3 \)[/tex] (acid) and [tex]\( NO_3^- \)[/tex] (conjugate base) forms an acid-conjugate base pair.
Therefore, the correct base-conjugate acid pair in the given balanced equation is:
[tex]\[ NH_3 / NH_4^+ \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.