Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To identify the base-conjugate acid pair in the given balanced equation, we need to understand the concept of acids and bases in the Bronsted-Lowry sense. According to the Bronsted-Lowry theory, an acid is a proton (H[tex]\(^+\)[/tex]) donor, and a base is a proton acceptor. A conjugate acid is formed when the base gains a proton, and a conjugate base is what remains after the acid has donated a proton.
The given equation is:
[tex]\[ NH_3 + HNO_3 \rightarrow NH_4^+ + NO_3^- \][/tex]
Let's analyze each component:
1. Identify the reactants and products:
- [tex]\( NH_3 \)[/tex] is ammonia.
- [tex]\( HNO_3 \)[/tex] is nitric acid.
- [tex]\( NH_4^+ \)[/tex] is the ammonium ion.
- [tex]\( NO_3^- \)[/tex] is the nitrate ion.
2. Determine proton transfer:
- [tex]\( NH_3 \)[/tex] becomes [tex]\( NH_4^+ \)[/tex]. This means [tex]\( NH_3 \)[/tex] accepts a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( NH_3 \)[/tex] acts as a base, and [tex]\( NH_4^+ \)[/tex] is its conjugate acid.
- [tex]\( HNO_3 \)[/tex] becomes [tex]\( NO_3^- \)[/tex]. This means [tex]\( HNO_3 \)[/tex] donates a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( HNO_3 \)[/tex] acts as an acid, and [tex]\( NO_3^- \)[/tex] is its conjugate base.
3. Match the pairs:
- The pair [tex]\( NH_3 \)[/tex] (base) and [tex]\( NH_4^+ \)[/tex] (conjugate acid) forms a base-conjugate acid pair.
- The pair [tex]\( HNO_3 \)[/tex] (acid) and [tex]\( NO_3^- \)[/tex] (conjugate base) forms an acid-conjugate base pair.
Therefore, the correct base-conjugate acid pair in the given balanced equation is:
[tex]\[ NH_3 / NH_4^+ \][/tex]
The given equation is:
[tex]\[ NH_3 + HNO_3 \rightarrow NH_4^+ + NO_3^- \][/tex]
Let's analyze each component:
1. Identify the reactants and products:
- [tex]\( NH_3 \)[/tex] is ammonia.
- [tex]\( HNO_3 \)[/tex] is nitric acid.
- [tex]\( NH_4^+ \)[/tex] is the ammonium ion.
- [tex]\( NO_3^- \)[/tex] is the nitrate ion.
2. Determine proton transfer:
- [tex]\( NH_3 \)[/tex] becomes [tex]\( NH_4^+ \)[/tex]. This means [tex]\( NH_3 \)[/tex] accepts a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( NH_3 \)[/tex] acts as a base, and [tex]\( NH_4^+ \)[/tex] is its conjugate acid.
- [tex]\( HNO_3 \)[/tex] becomes [tex]\( NO_3^- \)[/tex]. This means [tex]\( HNO_3 \)[/tex] donates a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( HNO_3 \)[/tex] acts as an acid, and [tex]\( NO_3^- \)[/tex] is its conjugate base.
3. Match the pairs:
- The pair [tex]\( NH_3 \)[/tex] (base) and [tex]\( NH_4^+ \)[/tex] (conjugate acid) forms a base-conjugate acid pair.
- The pair [tex]\( HNO_3 \)[/tex] (acid) and [tex]\( NO_3^- \)[/tex] (conjugate base) forms an acid-conjugate base pair.
Therefore, the correct base-conjugate acid pair in the given balanced equation is:
[tex]\[ NH_3 / NH_4^+ \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.