Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To identify the base-conjugate acid pair in the given balanced equation, we need to understand the concept of acids and bases in the Bronsted-Lowry sense. According to the Bronsted-Lowry theory, an acid is a proton (H[tex]\(^+\)[/tex]) donor, and a base is a proton acceptor. A conjugate acid is formed when the base gains a proton, and a conjugate base is what remains after the acid has donated a proton.
The given equation is:
[tex]\[ NH_3 + HNO_3 \rightarrow NH_4^+ + NO_3^- \][/tex]
Let's analyze each component:
1. Identify the reactants and products:
- [tex]\( NH_3 \)[/tex] is ammonia.
- [tex]\( HNO_3 \)[/tex] is nitric acid.
- [tex]\( NH_4^+ \)[/tex] is the ammonium ion.
- [tex]\( NO_3^- \)[/tex] is the nitrate ion.
2. Determine proton transfer:
- [tex]\( NH_3 \)[/tex] becomes [tex]\( NH_4^+ \)[/tex]. This means [tex]\( NH_3 \)[/tex] accepts a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( NH_3 \)[/tex] acts as a base, and [tex]\( NH_4^+ \)[/tex] is its conjugate acid.
- [tex]\( HNO_3 \)[/tex] becomes [tex]\( NO_3^- \)[/tex]. This means [tex]\( HNO_3 \)[/tex] donates a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( HNO_3 \)[/tex] acts as an acid, and [tex]\( NO_3^- \)[/tex] is its conjugate base.
3. Match the pairs:
- The pair [tex]\( NH_3 \)[/tex] (base) and [tex]\( NH_4^+ \)[/tex] (conjugate acid) forms a base-conjugate acid pair.
- The pair [tex]\( HNO_3 \)[/tex] (acid) and [tex]\( NO_3^- \)[/tex] (conjugate base) forms an acid-conjugate base pair.
Therefore, the correct base-conjugate acid pair in the given balanced equation is:
[tex]\[ NH_3 / NH_4^+ \][/tex]
The given equation is:
[tex]\[ NH_3 + HNO_3 \rightarrow NH_4^+ + NO_3^- \][/tex]
Let's analyze each component:
1. Identify the reactants and products:
- [tex]\( NH_3 \)[/tex] is ammonia.
- [tex]\( HNO_3 \)[/tex] is nitric acid.
- [tex]\( NH_4^+ \)[/tex] is the ammonium ion.
- [tex]\( NO_3^- \)[/tex] is the nitrate ion.
2. Determine proton transfer:
- [tex]\( NH_3 \)[/tex] becomes [tex]\( NH_4^+ \)[/tex]. This means [tex]\( NH_3 \)[/tex] accepts a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( NH_3 \)[/tex] acts as a base, and [tex]\( NH_4^+ \)[/tex] is its conjugate acid.
- [tex]\( HNO_3 \)[/tex] becomes [tex]\( NO_3^- \)[/tex]. This means [tex]\( HNO_3 \)[/tex] donates a proton (H[tex]\(^+\)[/tex]). Therefore, [tex]\( HNO_3 \)[/tex] acts as an acid, and [tex]\( NO_3^- \)[/tex] is its conjugate base.
3. Match the pairs:
- The pair [tex]\( NH_3 \)[/tex] (base) and [tex]\( NH_4^+ \)[/tex] (conjugate acid) forms a base-conjugate acid pair.
- The pair [tex]\( HNO_3 \)[/tex] (acid) and [tex]\( NO_3^- \)[/tex] (conjugate base) forms an acid-conjugate base pair.
Therefore, the correct base-conjugate acid pair in the given balanced equation is:
[tex]\[ NH_3 / NH_4^+ \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.