Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's solve the given problem step-by-step.
Question:
The energy stored in a parallel plate capacitor is 3 Joules. What is the capacitance of the capacitor if the potential difference between the plates is 220 Volts?
Given data:
1. Energy stored (E) = 3 Joules
2. Potential difference (V) = 220 Volts
To find: Capacitance (C) in microfarads ([tex]\( \mu F \)[/tex])
Step-by-step solution:
1. Write down the formula for the energy stored in a capacitor:
[tex]\[ E = \frac{1}{2} C V^2 \][/tex]
2. Rearrange the formula to solve for capacitance (C):
[tex]\[ C = \frac{2E}{V^2} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ C = \frac{2 \times 3}{220^2} \][/tex]
4. Calculate the capacitance in Farads:
[tex]\[ C = \frac{6}{48400} \approx 0.00012396694214876034 \, \text{Farads} \][/tex]
5. Convert the capacitance from Farads to microfarads:
[tex]\[ 1 \, \text{Farad} = 10^6 \, \mu \text{Farads} \][/tex]
[tex]\[ C \approx 0.00012396694214876034 \, \text{Farads} \times 10^6 \approx 123.96694214876034 \, \mu \text{Farads} \][/tex]
Result:
The capacitance of the capacitor is approximately [tex]\( 124 \, \mu F \)[/tex].
So, the correct answer is:
A. [tex]\( 124 \, \mu \text{F} \)[/tex]
Question:
The energy stored in a parallel plate capacitor is 3 Joules. What is the capacitance of the capacitor if the potential difference between the plates is 220 Volts?
Given data:
1. Energy stored (E) = 3 Joules
2. Potential difference (V) = 220 Volts
To find: Capacitance (C) in microfarads ([tex]\( \mu F \)[/tex])
Step-by-step solution:
1. Write down the formula for the energy stored in a capacitor:
[tex]\[ E = \frac{1}{2} C V^2 \][/tex]
2. Rearrange the formula to solve for capacitance (C):
[tex]\[ C = \frac{2E}{V^2} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ C = \frac{2 \times 3}{220^2} \][/tex]
4. Calculate the capacitance in Farads:
[tex]\[ C = \frac{6}{48400} \approx 0.00012396694214876034 \, \text{Farads} \][/tex]
5. Convert the capacitance from Farads to microfarads:
[tex]\[ 1 \, \text{Farad} = 10^6 \, \mu \text{Farads} \][/tex]
[tex]\[ C \approx 0.00012396694214876034 \, \text{Farads} \times 10^6 \approx 123.96694214876034 \, \mu \text{Farads} \][/tex]
Result:
The capacitance of the capacitor is approximately [tex]\( 124 \, \mu F \)[/tex].
So, the correct answer is:
A. [tex]\( 124 \, \mu \text{F} \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.