Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve the given problem step-by-step.
Question:
The energy stored in a parallel plate capacitor is 3 Joules. What is the capacitance of the capacitor if the potential difference between the plates is 220 Volts?
Given data:
1. Energy stored (E) = 3 Joules
2. Potential difference (V) = 220 Volts
To find: Capacitance (C) in microfarads ([tex]\( \mu F \)[/tex])
Step-by-step solution:
1. Write down the formula for the energy stored in a capacitor:
[tex]\[ E = \frac{1}{2} C V^2 \][/tex]
2. Rearrange the formula to solve for capacitance (C):
[tex]\[ C = \frac{2E}{V^2} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ C = \frac{2 \times 3}{220^2} \][/tex]
4. Calculate the capacitance in Farads:
[tex]\[ C = \frac{6}{48400} \approx 0.00012396694214876034 \, \text{Farads} \][/tex]
5. Convert the capacitance from Farads to microfarads:
[tex]\[ 1 \, \text{Farad} = 10^6 \, \mu \text{Farads} \][/tex]
[tex]\[ C \approx 0.00012396694214876034 \, \text{Farads} \times 10^6 \approx 123.96694214876034 \, \mu \text{Farads} \][/tex]
Result:
The capacitance of the capacitor is approximately [tex]\( 124 \, \mu F \)[/tex].
So, the correct answer is:
A. [tex]\( 124 \, \mu \text{F} \)[/tex]
Question:
The energy stored in a parallel plate capacitor is 3 Joules. What is the capacitance of the capacitor if the potential difference between the plates is 220 Volts?
Given data:
1. Energy stored (E) = 3 Joules
2. Potential difference (V) = 220 Volts
To find: Capacitance (C) in microfarads ([tex]\( \mu F \)[/tex])
Step-by-step solution:
1. Write down the formula for the energy stored in a capacitor:
[tex]\[ E = \frac{1}{2} C V^2 \][/tex]
2. Rearrange the formula to solve for capacitance (C):
[tex]\[ C = \frac{2E}{V^2} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ C = \frac{2 \times 3}{220^2} \][/tex]
4. Calculate the capacitance in Farads:
[tex]\[ C = \frac{6}{48400} \approx 0.00012396694214876034 \, \text{Farads} \][/tex]
5. Convert the capacitance from Farads to microfarads:
[tex]\[ 1 \, \text{Farad} = 10^6 \, \mu \text{Farads} \][/tex]
[tex]\[ C \approx 0.00012396694214876034 \, \text{Farads} \times 10^6 \approx 123.96694214876034 \, \mu \text{Farads} \][/tex]
Result:
The capacitance of the capacitor is approximately [tex]\( 124 \, \mu F \)[/tex].
So, the correct answer is:
A. [tex]\( 124 \, \mu \text{F} \)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.