Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To convert the quadratic equation [tex]\( y = -x^2 - 8x - 29 \)[/tex] to its vertex form by completing the square, follow these steps:
1. Factor out the coefficient of [tex]\(x^2\)[/tex] term:
Since the coefficient of [tex]\(x^2\)[/tex] is [tex]\(-1\)[/tex], factor that out from the [tex]\(x^2\)[/tex] and [tex]\(x\)[/tex] terms:
[tex]\[ y = -\left(x^2 + 8x\right) - 29 \][/tex]
2. Complete the square:
To complete the square, we need to add and subtract a specific value inside the parentheses. The value to add and subtract is calculated by taking half of the coefficient of [tex]\(x\)[/tex], squaring it:
[tex]\[ \left(\frac{8}{2}\right)^2 = 16 \][/tex]
Add and subtract 16 inside the parentheses:
[tex]\[ y = -\left(x^2 + 8x + 16 - 16\right) - 29 \][/tex]
3. Rewrite the completed square:
The expression [tex]\(x^2 + 8x + 16\)[/tex] can be written as a perfect square:
[tex]\[ y = -\left((x + 4)^2 - 16\right) - 29 \][/tex]
4. Distribute the negative sign:
Distribute the negative sign through the completed square:
[tex]\[ y = - (x + 4)^2 + 16 - 29 \][/tex]
5. Simplify the constants:
Combine the constants:
[tex]\[ y = - (x + 4)^2 - 13 \][/tex]
Therefore, the vertex form of the given quadratic equation is:
[tex]\[ \boxed{y = -(x+4)^2 - 13} \][/tex]
So, the correct answer is:
A. [tex]\( y = -(x+4)^2 - 13 \)[/tex]
1. Factor out the coefficient of [tex]\(x^2\)[/tex] term:
Since the coefficient of [tex]\(x^2\)[/tex] is [tex]\(-1\)[/tex], factor that out from the [tex]\(x^2\)[/tex] and [tex]\(x\)[/tex] terms:
[tex]\[ y = -\left(x^2 + 8x\right) - 29 \][/tex]
2. Complete the square:
To complete the square, we need to add and subtract a specific value inside the parentheses. The value to add and subtract is calculated by taking half of the coefficient of [tex]\(x\)[/tex], squaring it:
[tex]\[ \left(\frac{8}{2}\right)^2 = 16 \][/tex]
Add and subtract 16 inside the parentheses:
[tex]\[ y = -\left(x^2 + 8x + 16 - 16\right) - 29 \][/tex]
3. Rewrite the completed square:
The expression [tex]\(x^2 + 8x + 16\)[/tex] can be written as a perfect square:
[tex]\[ y = -\left((x + 4)^2 - 16\right) - 29 \][/tex]
4. Distribute the negative sign:
Distribute the negative sign through the completed square:
[tex]\[ y = - (x + 4)^2 + 16 - 29 \][/tex]
5. Simplify the constants:
Combine the constants:
[tex]\[ y = - (x + 4)^2 - 13 \][/tex]
Therefore, the vertex form of the given quadratic equation is:
[tex]\[ \boxed{y = -(x+4)^2 - 13} \][/tex]
So, the correct answer is:
A. [tex]\( y = -(x+4)^2 - 13 \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.