At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To convert the quadratic equation [tex]\( y = -x^2 - 8x - 29 \)[/tex] to its vertex form by completing the square, follow these steps:
1. Factor out the coefficient of [tex]\(x^2\)[/tex] term:
Since the coefficient of [tex]\(x^2\)[/tex] is [tex]\(-1\)[/tex], factor that out from the [tex]\(x^2\)[/tex] and [tex]\(x\)[/tex] terms:
[tex]\[ y = -\left(x^2 + 8x\right) - 29 \][/tex]
2. Complete the square:
To complete the square, we need to add and subtract a specific value inside the parentheses. The value to add and subtract is calculated by taking half of the coefficient of [tex]\(x\)[/tex], squaring it:
[tex]\[ \left(\frac{8}{2}\right)^2 = 16 \][/tex]
Add and subtract 16 inside the parentheses:
[tex]\[ y = -\left(x^2 + 8x + 16 - 16\right) - 29 \][/tex]
3. Rewrite the completed square:
The expression [tex]\(x^2 + 8x + 16\)[/tex] can be written as a perfect square:
[tex]\[ y = -\left((x + 4)^2 - 16\right) - 29 \][/tex]
4. Distribute the negative sign:
Distribute the negative sign through the completed square:
[tex]\[ y = - (x + 4)^2 + 16 - 29 \][/tex]
5. Simplify the constants:
Combine the constants:
[tex]\[ y = - (x + 4)^2 - 13 \][/tex]
Therefore, the vertex form of the given quadratic equation is:
[tex]\[ \boxed{y = -(x+4)^2 - 13} \][/tex]
So, the correct answer is:
A. [tex]\( y = -(x+4)^2 - 13 \)[/tex]
1. Factor out the coefficient of [tex]\(x^2\)[/tex] term:
Since the coefficient of [tex]\(x^2\)[/tex] is [tex]\(-1\)[/tex], factor that out from the [tex]\(x^2\)[/tex] and [tex]\(x\)[/tex] terms:
[tex]\[ y = -\left(x^2 + 8x\right) - 29 \][/tex]
2. Complete the square:
To complete the square, we need to add and subtract a specific value inside the parentheses. The value to add and subtract is calculated by taking half of the coefficient of [tex]\(x\)[/tex], squaring it:
[tex]\[ \left(\frac{8}{2}\right)^2 = 16 \][/tex]
Add and subtract 16 inside the parentheses:
[tex]\[ y = -\left(x^2 + 8x + 16 - 16\right) - 29 \][/tex]
3. Rewrite the completed square:
The expression [tex]\(x^2 + 8x + 16\)[/tex] can be written as a perfect square:
[tex]\[ y = -\left((x + 4)^2 - 16\right) - 29 \][/tex]
4. Distribute the negative sign:
Distribute the negative sign through the completed square:
[tex]\[ y = - (x + 4)^2 + 16 - 29 \][/tex]
5. Simplify the constants:
Combine the constants:
[tex]\[ y = - (x + 4)^2 - 13 \][/tex]
Therefore, the vertex form of the given quadratic equation is:
[tex]\[ \boxed{y = -(x+4)^2 - 13} \][/tex]
So, the correct answer is:
A. [tex]\( y = -(x+4)^2 - 13 \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.