Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Alright, let's solve this step-by-step to determine which of the given probabilities is the greatest for a standard normal distribution, where [tex]\( z \)[/tex] follows a normal distribution with mean 0 and standard deviation 1. The probabilities we need to compare are:
[tex]\[ P(-1.5 \leq z \leq -0.5) \][/tex]
[tex]\[ P(-0.5 \leq z \leq 0.5) \][/tex]
[tex]\[ P(0.5 \leq z \leq 1.5) \][/tex]
[tex]\[ P(1.5 \leq z \leq 2.5) \][/tex]
To find these probabilities, we need to calculate the cumulative distribution function (CDF) values at different z-scores and use these to find the areas under the normal curve between the specified limits.
### Step 1: Calculate Individual Probabilities
1. For [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex]:
[tex]\[ P(-1.5 \leq z \leq -0.5) = \Phi(-0.5) - \Phi(-1.5) \][/tex]
2. For [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex]:
[tex]\[ P(-0.5 \leq z \leq 0.5) = \Phi(0.5) - \Phi(-0.5) \][/tex]
3. For [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex]:
[tex]\[ P(0.5 \leq z \leq 1.5) = \Phi(1.5) - \Phi(0.5) \][/tex]
4. For [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex]:
[tex]\[ P(1.5 \leq z \leq 2.5) = \Phi(2.5) - \Phi(1.5) \][/tex]
Here, [tex]\(\Phi(z)\)[/tex] denotes the cumulative distribution function for the standard normal distribution evaluated at [tex]\(z\)[/tex].
### Step 2: List the Calculated Probabilities
Based on the calculations performed:
- [tex]\( P(-1.5 \leq z \leq -0.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \)[/tex]
- [tex]\( P(0.5 \leq z \leq 1.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(1.5 \leq z \leq 2.5) = 0.060597535943081926 \)[/tex]
### Step 3: Compare the Probabilities
Now, we compare the obtained probabilities:
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex])
- [tex]\( 0.38292492254802624 \)[/tex] (for [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex])
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex])
- [tex]\( 0.060597535943081926 \)[/tex] (for [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex])
Among these probabilities, the greatest probability is:
[tex]\[ P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \][/tex]
### Conclusion
Hence, the interval [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex] has the greatest probability for a standard normal distribution.
[tex]\[ P(-1.5 \leq z \leq -0.5) \][/tex]
[tex]\[ P(-0.5 \leq z \leq 0.5) \][/tex]
[tex]\[ P(0.5 \leq z \leq 1.5) \][/tex]
[tex]\[ P(1.5 \leq z \leq 2.5) \][/tex]
To find these probabilities, we need to calculate the cumulative distribution function (CDF) values at different z-scores and use these to find the areas under the normal curve between the specified limits.
### Step 1: Calculate Individual Probabilities
1. For [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex]:
[tex]\[ P(-1.5 \leq z \leq -0.5) = \Phi(-0.5) - \Phi(-1.5) \][/tex]
2. For [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex]:
[tex]\[ P(-0.5 \leq z \leq 0.5) = \Phi(0.5) - \Phi(-0.5) \][/tex]
3. For [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex]:
[tex]\[ P(0.5 \leq z \leq 1.5) = \Phi(1.5) - \Phi(0.5) \][/tex]
4. For [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex]:
[tex]\[ P(1.5 \leq z \leq 2.5) = \Phi(2.5) - \Phi(1.5) \][/tex]
Here, [tex]\(\Phi(z)\)[/tex] denotes the cumulative distribution function for the standard normal distribution evaluated at [tex]\(z\)[/tex].
### Step 2: List the Calculated Probabilities
Based on the calculations performed:
- [tex]\( P(-1.5 \leq z \leq -0.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \)[/tex]
- [tex]\( P(0.5 \leq z \leq 1.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(1.5 \leq z \leq 2.5) = 0.060597535943081926 \)[/tex]
### Step 3: Compare the Probabilities
Now, we compare the obtained probabilities:
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex])
- [tex]\( 0.38292492254802624 \)[/tex] (for [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex])
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex])
- [tex]\( 0.060597535943081926 \)[/tex] (for [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex])
Among these probabilities, the greatest probability is:
[tex]\[ P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \][/tex]
### Conclusion
Hence, the interval [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex] has the greatest probability for a standard normal distribution.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.