Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Alright, let's solve this step-by-step to determine which of the given probabilities is the greatest for a standard normal distribution, where [tex]\( z \)[/tex] follows a normal distribution with mean 0 and standard deviation 1. The probabilities we need to compare are:
[tex]\[ P(-1.5 \leq z \leq -0.5) \][/tex]
[tex]\[ P(-0.5 \leq z \leq 0.5) \][/tex]
[tex]\[ P(0.5 \leq z \leq 1.5) \][/tex]
[tex]\[ P(1.5 \leq z \leq 2.5) \][/tex]
To find these probabilities, we need to calculate the cumulative distribution function (CDF) values at different z-scores and use these to find the areas under the normal curve between the specified limits.
### Step 1: Calculate Individual Probabilities
1. For [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex]:
[tex]\[ P(-1.5 \leq z \leq -0.5) = \Phi(-0.5) - \Phi(-1.5) \][/tex]
2. For [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex]:
[tex]\[ P(-0.5 \leq z \leq 0.5) = \Phi(0.5) - \Phi(-0.5) \][/tex]
3. For [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex]:
[tex]\[ P(0.5 \leq z \leq 1.5) = \Phi(1.5) - \Phi(0.5) \][/tex]
4. For [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex]:
[tex]\[ P(1.5 \leq z \leq 2.5) = \Phi(2.5) - \Phi(1.5) \][/tex]
Here, [tex]\(\Phi(z)\)[/tex] denotes the cumulative distribution function for the standard normal distribution evaluated at [tex]\(z\)[/tex].
### Step 2: List the Calculated Probabilities
Based on the calculations performed:
- [tex]\( P(-1.5 \leq z \leq -0.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \)[/tex]
- [tex]\( P(0.5 \leq z \leq 1.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(1.5 \leq z \leq 2.5) = 0.060597535943081926 \)[/tex]
### Step 3: Compare the Probabilities
Now, we compare the obtained probabilities:
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex])
- [tex]\( 0.38292492254802624 \)[/tex] (for [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex])
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex])
- [tex]\( 0.060597535943081926 \)[/tex] (for [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex])
Among these probabilities, the greatest probability is:
[tex]\[ P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \][/tex]
### Conclusion
Hence, the interval [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex] has the greatest probability for a standard normal distribution.
[tex]\[ P(-1.5 \leq z \leq -0.5) \][/tex]
[tex]\[ P(-0.5 \leq z \leq 0.5) \][/tex]
[tex]\[ P(0.5 \leq z \leq 1.5) \][/tex]
[tex]\[ P(1.5 \leq z \leq 2.5) \][/tex]
To find these probabilities, we need to calculate the cumulative distribution function (CDF) values at different z-scores and use these to find the areas under the normal curve between the specified limits.
### Step 1: Calculate Individual Probabilities
1. For [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex]:
[tex]\[ P(-1.5 \leq z \leq -0.5) = \Phi(-0.5) - \Phi(-1.5) \][/tex]
2. For [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex]:
[tex]\[ P(-0.5 \leq z \leq 0.5) = \Phi(0.5) - \Phi(-0.5) \][/tex]
3. For [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex]:
[tex]\[ P(0.5 \leq z \leq 1.5) = \Phi(1.5) - \Phi(0.5) \][/tex]
4. For [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex]:
[tex]\[ P(1.5 \leq z \leq 2.5) = \Phi(2.5) - \Phi(1.5) \][/tex]
Here, [tex]\(\Phi(z)\)[/tex] denotes the cumulative distribution function for the standard normal distribution evaluated at [tex]\(z\)[/tex].
### Step 2: List the Calculated Probabilities
Based on the calculations performed:
- [tex]\( P(-1.5 \leq z \leq -0.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \)[/tex]
- [tex]\( P(0.5 \leq z \leq 1.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(1.5 \leq z \leq 2.5) = 0.060597535943081926 \)[/tex]
### Step 3: Compare the Probabilities
Now, we compare the obtained probabilities:
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex])
- [tex]\( 0.38292492254802624 \)[/tex] (for [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex])
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex])
- [tex]\( 0.060597535943081926 \)[/tex] (for [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex])
Among these probabilities, the greatest probability is:
[tex]\[ P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \][/tex]
### Conclusion
Hence, the interval [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex] has the greatest probability for a standard normal distribution.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.