Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's determine the solution for the system of linear equations:
[tex]\[ \begin{aligned} &x_1 + 2x_2 = 11 \\ &3x_1 + 4x_2 = 25 \end{aligned} \][/tex]
First, we write this system in the matrix form [tex]\(\mathbf{A}\mathbf{x} = \mathbf{b}\)[/tex], where:
[tex]\[ \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} , \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} , \quad \mathbf{b} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
Now, we need to solve for [tex]\(\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} \)[/tex].
Given the matrix equation:
[tex]\[ \mathbf{A}\mathbf{x} = \mathbf{b} \][/tex]
we see that:
[tex]\[ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
To find [tex]\(\mathbf{x}\)[/tex], we use the inverse of [tex]\(\mathbf{A}\)[/tex] (if it exists). The solution can be found by:
[tex]\[ \mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \][/tex]
Given the computations or solving by substitution/elimination, we determine the solutions for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex]. The solution provided is:
[tex]\[ x_1 = 3, \quad x_2 = 4 \][/tex]
So, the detailed solutions to the system of linear equations:
[tex]\[ \begin{aligned} x_1 + 2x_2 &= 11 \\ 3x_1 + 4x_2 &= 25 \end{aligned} \][/tex]
are [tex]\( x_1 \approx 2.9999999999999987 \)[/tex] and [tex]\( x_2 \approx 4.000000000000001 \)[/tex].
[tex]\[ \begin{aligned} &x_1 + 2x_2 = 11 \\ &3x_1 + 4x_2 = 25 \end{aligned} \][/tex]
First, we write this system in the matrix form [tex]\(\mathbf{A}\mathbf{x} = \mathbf{b}\)[/tex], where:
[tex]\[ \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} , \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} , \quad \mathbf{b} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
Now, we need to solve for [tex]\(\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} \)[/tex].
Given the matrix equation:
[tex]\[ \mathbf{A}\mathbf{x} = \mathbf{b} \][/tex]
we see that:
[tex]\[ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
To find [tex]\(\mathbf{x}\)[/tex], we use the inverse of [tex]\(\mathbf{A}\)[/tex] (if it exists). The solution can be found by:
[tex]\[ \mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \][/tex]
Given the computations or solving by substitution/elimination, we determine the solutions for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex]. The solution provided is:
[tex]\[ x_1 = 3, \quad x_2 = 4 \][/tex]
So, the detailed solutions to the system of linear equations:
[tex]\[ \begin{aligned} x_1 + 2x_2 &= 11 \\ 3x_1 + 4x_2 &= 25 \end{aligned} \][/tex]
are [tex]\( x_1 \approx 2.9999999999999987 \)[/tex] and [tex]\( x_2 \approx 4.000000000000001 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.