Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure! Let's determine the solution for the system of linear equations:
[tex]\[ \begin{aligned} &x_1 + 2x_2 = 11 \\ &3x_1 + 4x_2 = 25 \end{aligned} \][/tex]
First, we write this system in the matrix form [tex]\(\mathbf{A}\mathbf{x} = \mathbf{b}\)[/tex], where:
[tex]\[ \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} , \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} , \quad \mathbf{b} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
Now, we need to solve for [tex]\(\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} \)[/tex].
Given the matrix equation:
[tex]\[ \mathbf{A}\mathbf{x} = \mathbf{b} \][/tex]
we see that:
[tex]\[ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
To find [tex]\(\mathbf{x}\)[/tex], we use the inverse of [tex]\(\mathbf{A}\)[/tex] (if it exists). The solution can be found by:
[tex]\[ \mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \][/tex]
Given the computations or solving by substitution/elimination, we determine the solutions for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex]. The solution provided is:
[tex]\[ x_1 = 3, \quad x_2 = 4 \][/tex]
So, the detailed solutions to the system of linear equations:
[tex]\[ \begin{aligned} x_1 + 2x_2 &= 11 \\ 3x_1 + 4x_2 &= 25 \end{aligned} \][/tex]
are [tex]\( x_1 \approx 2.9999999999999987 \)[/tex] and [tex]\( x_2 \approx 4.000000000000001 \)[/tex].
[tex]\[ \begin{aligned} &x_1 + 2x_2 = 11 \\ &3x_1 + 4x_2 = 25 \end{aligned} \][/tex]
First, we write this system in the matrix form [tex]\(\mathbf{A}\mathbf{x} = \mathbf{b}\)[/tex], where:
[tex]\[ \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} , \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} , \quad \mathbf{b} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
Now, we need to solve for [tex]\(\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} \)[/tex].
Given the matrix equation:
[tex]\[ \mathbf{A}\mathbf{x} = \mathbf{b} \][/tex]
we see that:
[tex]\[ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \end{pmatrix} = \begin{pmatrix} 11 \\ 25 \\ \end{pmatrix} \][/tex]
To find [tex]\(\mathbf{x}\)[/tex], we use the inverse of [tex]\(\mathbf{A}\)[/tex] (if it exists). The solution can be found by:
[tex]\[ \mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \][/tex]
Given the computations or solving by substitution/elimination, we determine the solutions for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex]. The solution provided is:
[tex]\[ x_1 = 3, \quad x_2 = 4 \][/tex]
So, the detailed solutions to the system of linear equations:
[tex]\[ \begin{aligned} x_1 + 2x_2 &= 11 \\ 3x_1 + 4x_2 &= 25 \end{aligned} \][/tex]
are [tex]\( x_1 \approx 2.9999999999999987 \)[/tex] and [tex]\( x_2 \approx 4.000000000000001 \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.