Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the change in kinetic energy of a proton when it is accelerated through a potential difference of 2 megavolts (MV), we can use the basic physics equation for kinetic energy change due to electric potential difference:
[tex]\[ \Delta KE = q \times V \][/tex]
where:
- [tex]\(\Delta KE\)[/tex] is the change in kinetic energy,
- [tex]\(q\)[/tex] is the charge of the proton,
- [tex]\(V\)[/tex] is the potential difference.
Given:
- The charge of a proton ([tex]\(q\)[/tex]) is [tex]\(1.6 \times 10^{-19}\)[/tex] Coulombs.
- The potential difference ([tex]\(V\)[/tex]) is [tex]\(2 \times 10^{6}\)[/tex] volts (2 MV).
Let's plug these values into the equation:
[tex]\[ \Delta KE = (1.6 \times 10^{-19} \, \text{C}) \times (2 \times 10^{6} \, \text{V}) \][/tex]
First, multiply the numerical parts:
[tex]\[ 1.6 \times 2 = 3.2 \][/tex]
Next, combine the powers of 10:
[tex]\[ 10^{-19} \times 10^{6} = 10^{-19 + 6} = 10^{-13} \][/tex]
So, the change in kinetic energy is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{Joules} \][/tex]
To convert this energy into nanojoules (nJ), we use the conversion factor [tex]\(1 \, \text{Joule} = 10^{9} \, \text{nanojoules}\)[/tex]:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \times 10^{9} \, \left(\frac{\text{nJ}}{\text{J}}\right) = 3.2 \times 10^{-13 + 9} \, \text{nJ} = 3.2 \times 10^{-4} \, \text{nJ} = 0.00032 \, \text{nJ} \][/tex]
Therefore, the change in kinetic energy of the proton, when accelerated through a potential difference of 2 MV, is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \][/tex]
or equivalently,
[tex]\[ \Delta KE = 0.00032 \, \text{nJ} \][/tex]
Hence, when considering the decimal notation, the correct numerical result in nanojoules (nJ) is:
[tex]\[ \boxed{0.00032 \, \text{nJ}} \][/tex]
[tex]\[ \Delta KE = q \times V \][/tex]
where:
- [tex]\(\Delta KE\)[/tex] is the change in kinetic energy,
- [tex]\(q\)[/tex] is the charge of the proton,
- [tex]\(V\)[/tex] is the potential difference.
Given:
- The charge of a proton ([tex]\(q\)[/tex]) is [tex]\(1.6 \times 10^{-19}\)[/tex] Coulombs.
- The potential difference ([tex]\(V\)[/tex]) is [tex]\(2 \times 10^{6}\)[/tex] volts (2 MV).
Let's plug these values into the equation:
[tex]\[ \Delta KE = (1.6 \times 10^{-19} \, \text{C}) \times (2 \times 10^{6} \, \text{V}) \][/tex]
First, multiply the numerical parts:
[tex]\[ 1.6 \times 2 = 3.2 \][/tex]
Next, combine the powers of 10:
[tex]\[ 10^{-19} \times 10^{6} = 10^{-19 + 6} = 10^{-13} \][/tex]
So, the change in kinetic energy is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{Joules} \][/tex]
To convert this energy into nanojoules (nJ), we use the conversion factor [tex]\(1 \, \text{Joule} = 10^{9} \, \text{nanojoules}\)[/tex]:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \times 10^{9} \, \left(\frac{\text{nJ}}{\text{J}}\right) = 3.2 \times 10^{-13 + 9} \, \text{nJ} = 3.2 \times 10^{-4} \, \text{nJ} = 0.00032 \, \text{nJ} \][/tex]
Therefore, the change in kinetic energy of the proton, when accelerated through a potential difference of 2 MV, is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \][/tex]
or equivalently,
[tex]\[ \Delta KE = 0.00032 \, \text{nJ} \][/tex]
Hence, when considering the decimal notation, the correct numerical result in nanojoules (nJ) is:
[tex]\[ \boxed{0.00032 \, \text{nJ}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.