Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the change in kinetic energy of a proton when it is accelerated through a potential difference of 2 megavolts (MV), we can use the basic physics equation for kinetic energy change due to electric potential difference:
[tex]\[ \Delta KE = q \times V \][/tex]
where:
- [tex]\(\Delta KE\)[/tex] is the change in kinetic energy,
- [tex]\(q\)[/tex] is the charge of the proton,
- [tex]\(V\)[/tex] is the potential difference.
Given:
- The charge of a proton ([tex]\(q\)[/tex]) is [tex]\(1.6 \times 10^{-19}\)[/tex] Coulombs.
- The potential difference ([tex]\(V\)[/tex]) is [tex]\(2 \times 10^{6}\)[/tex] volts (2 MV).
Let's plug these values into the equation:
[tex]\[ \Delta KE = (1.6 \times 10^{-19} \, \text{C}) \times (2 \times 10^{6} \, \text{V}) \][/tex]
First, multiply the numerical parts:
[tex]\[ 1.6 \times 2 = 3.2 \][/tex]
Next, combine the powers of 10:
[tex]\[ 10^{-19} \times 10^{6} = 10^{-19 + 6} = 10^{-13} \][/tex]
So, the change in kinetic energy is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{Joules} \][/tex]
To convert this energy into nanojoules (nJ), we use the conversion factor [tex]\(1 \, \text{Joule} = 10^{9} \, \text{nanojoules}\)[/tex]:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \times 10^{9} \, \left(\frac{\text{nJ}}{\text{J}}\right) = 3.2 \times 10^{-13 + 9} \, \text{nJ} = 3.2 \times 10^{-4} \, \text{nJ} = 0.00032 \, \text{nJ} \][/tex]
Therefore, the change in kinetic energy of the proton, when accelerated through a potential difference of 2 MV, is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \][/tex]
or equivalently,
[tex]\[ \Delta KE = 0.00032 \, \text{nJ} \][/tex]
Hence, when considering the decimal notation, the correct numerical result in nanojoules (nJ) is:
[tex]\[ \boxed{0.00032 \, \text{nJ}} \][/tex]
[tex]\[ \Delta KE = q \times V \][/tex]
where:
- [tex]\(\Delta KE\)[/tex] is the change in kinetic energy,
- [tex]\(q\)[/tex] is the charge of the proton,
- [tex]\(V\)[/tex] is the potential difference.
Given:
- The charge of a proton ([tex]\(q\)[/tex]) is [tex]\(1.6 \times 10^{-19}\)[/tex] Coulombs.
- The potential difference ([tex]\(V\)[/tex]) is [tex]\(2 \times 10^{6}\)[/tex] volts (2 MV).
Let's plug these values into the equation:
[tex]\[ \Delta KE = (1.6 \times 10^{-19} \, \text{C}) \times (2 \times 10^{6} \, \text{V}) \][/tex]
First, multiply the numerical parts:
[tex]\[ 1.6 \times 2 = 3.2 \][/tex]
Next, combine the powers of 10:
[tex]\[ 10^{-19} \times 10^{6} = 10^{-19 + 6} = 10^{-13} \][/tex]
So, the change in kinetic energy is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{Joules} \][/tex]
To convert this energy into nanojoules (nJ), we use the conversion factor [tex]\(1 \, \text{Joule} = 10^{9} \, \text{nanojoules}\)[/tex]:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \times 10^{9} \, \left(\frac{\text{nJ}}{\text{J}}\right) = 3.2 \times 10^{-13 + 9} \, \text{nJ} = 3.2 \times 10^{-4} \, \text{nJ} = 0.00032 \, \text{nJ} \][/tex]
Therefore, the change in kinetic energy of the proton, when accelerated through a potential difference of 2 MV, is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \][/tex]
or equivalently,
[tex]\[ \Delta KE = 0.00032 \, \text{nJ} \][/tex]
Hence, when considering the decimal notation, the correct numerical result in nanojoules (nJ) is:
[tex]\[ \boxed{0.00032 \, \text{nJ}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.