At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the change in kinetic energy of a proton when it is accelerated through a potential difference of 2 megavolts (MV), we can use the basic physics equation for kinetic energy change due to electric potential difference:
[tex]\[ \Delta KE = q \times V \][/tex]
where:
- [tex]\(\Delta KE\)[/tex] is the change in kinetic energy,
- [tex]\(q\)[/tex] is the charge of the proton,
- [tex]\(V\)[/tex] is the potential difference.
Given:
- The charge of a proton ([tex]\(q\)[/tex]) is [tex]\(1.6 \times 10^{-19}\)[/tex] Coulombs.
- The potential difference ([tex]\(V\)[/tex]) is [tex]\(2 \times 10^{6}\)[/tex] volts (2 MV).
Let's plug these values into the equation:
[tex]\[ \Delta KE = (1.6 \times 10^{-19} \, \text{C}) \times (2 \times 10^{6} \, \text{V}) \][/tex]
First, multiply the numerical parts:
[tex]\[ 1.6 \times 2 = 3.2 \][/tex]
Next, combine the powers of 10:
[tex]\[ 10^{-19} \times 10^{6} = 10^{-19 + 6} = 10^{-13} \][/tex]
So, the change in kinetic energy is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{Joules} \][/tex]
To convert this energy into nanojoules (nJ), we use the conversion factor [tex]\(1 \, \text{Joule} = 10^{9} \, \text{nanojoules}\)[/tex]:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \times 10^{9} \, \left(\frac{\text{nJ}}{\text{J}}\right) = 3.2 \times 10^{-13 + 9} \, \text{nJ} = 3.2 \times 10^{-4} \, \text{nJ} = 0.00032 \, \text{nJ} \][/tex]
Therefore, the change in kinetic energy of the proton, when accelerated through a potential difference of 2 MV, is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \][/tex]
or equivalently,
[tex]\[ \Delta KE = 0.00032 \, \text{nJ} \][/tex]
Hence, when considering the decimal notation, the correct numerical result in nanojoules (nJ) is:
[tex]\[ \boxed{0.00032 \, \text{nJ}} \][/tex]
[tex]\[ \Delta KE = q \times V \][/tex]
where:
- [tex]\(\Delta KE\)[/tex] is the change in kinetic energy,
- [tex]\(q\)[/tex] is the charge of the proton,
- [tex]\(V\)[/tex] is the potential difference.
Given:
- The charge of a proton ([tex]\(q\)[/tex]) is [tex]\(1.6 \times 10^{-19}\)[/tex] Coulombs.
- The potential difference ([tex]\(V\)[/tex]) is [tex]\(2 \times 10^{6}\)[/tex] volts (2 MV).
Let's plug these values into the equation:
[tex]\[ \Delta KE = (1.6 \times 10^{-19} \, \text{C}) \times (2 \times 10^{6} \, \text{V}) \][/tex]
First, multiply the numerical parts:
[tex]\[ 1.6 \times 2 = 3.2 \][/tex]
Next, combine the powers of 10:
[tex]\[ 10^{-19} \times 10^{6} = 10^{-19 + 6} = 10^{-13} \][/tex]
So, the change in kinetic energy is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{Joules} \][/tex]
To convert this energy into nanojoules (nJ), we use the conversion factor [tex]\(1 \, \text{Joule} = 10^{9} \, \text{nanojoules}\)[/tex]:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \times 10^{9} \, \left(\frac{\text{nJ}}{\text{J}}\right) = 3.2 \times 10^{-13 + 9} \, \text{nJ} = 3.2 \times 10^{-4} \, \text{nJ} = 0.00032 \, \text{nJ} \][/tex]
Therefore, the change in kinetic energy of the proton, when accelerated through a potential difference of 2 MV, is:
[tex]\[ \Delta KE = 3.2 \times 10^{-13} \, \text{J} \][/tex]
or equivalently,
[tex]\[ \Delta KE = 0.00032 \, \text{nJ} \][/tex]
Hence, when considering the decimal notation, the correct numerical result in nanojoules (nJ) is:
[tex]\[ \boxed{0.00032 \, \text{nJ}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.