Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Alright, let's go through the geometric probability distribution problem step-by-step.
### (a) Probability [tex]\( P(3) \)[/tex]
Given:
- [tex]\( p = 0.524 \)[/tex] (Shaquille O'Neal's success rate)
- [tex]\( x = 3 \)[/tex] (we want the probability he makes his third attempt after missing two)
The probability [tex]\( P(x) \)[/tex] for a geometric distribution is given by:
[tex]\[ P(x) = p (1 - p)^{x-1} \][/tex]
So, for [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^{3-1} \][/tex]
From the result obtained:
[tex]\[ P(3) = 0.118725824 \][/tex]
### (b) Probability Distribution for [tex]\( x = 1, 2, \ldots, 10 \)[/tex]
We need to construct a probability distribution for [tex]\( x = 1 \)[/tex] to [tex]\( x = 10 \)[/tex]. The probability distribution [tex]\( P(x) \)[/tex] is:
1. For [tex]\( x = 1 \)[/tex]:
[tex]\[ P(1) = 0.524 \][/tex]
2. For [tex]\( x = 2 \)[/tex]:
[tex]\[ P(2) = 0.524 \times (1 - 0.524)^1 = 0.249424 \][/tex]
3. For [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^2 = 0.118725824 \][/tex]
4. For [tex]\( x = 4 \)[/tex]:
[tex]\[ P(4) = 0.524 \times (1 - 0.524)^3 = 0.056513492224 \][/tex]
5. For [tex]\( x = 5 \)[/tex]:
[tex]\[ P(5) = 0.524 \times (1 - 0.524)^4 = 0.026900422298624 \][/tex]
6. For [tex]\( x = 6 \)[/tex]:
[tex]\[ P(6) = 0.524 \times (1 - 0.524)^5 = 0.012804601014145 \][/tex]
7. For [tex]\( x = 7 \)[/tex]:
[tex]\[ P(7) = 0.524 \times (1 - 0.524)^6 = 0.006094990082733 \][/tex]
8. For [tex]\( x = 8 \)[/tex]:
[tex]\[ P(8) = 0.524 \times (1 - 0.524)^7 = 0.002901215279381 \][/tex]
9. For [tex]\( x = 9 \)[/tex]:
[tex]\[ P(9) = 0.524 \times (1 - 0.524)^8 = 0.001380978472985 \][/tex]
10. For [tex]\( x = 10 \)[/tex]:
[tex]\[ P(10) = 0.524 \times (1 - 0.524)^9 = 0.000657345753141 \][/tex]
Thus, the probability distribution is:
[tex]\[ [0.524, 0.249424, 0.118725824, 0.056513492224, 0.026900422298624, 0.012804601014145, 0.006094990082733, 0.002901215279381, 0.001380978472985, 0.000657345753141] \][/tex]
### (c) Mean of the Distribution
The mean [tex]\( \mu \)[/tex] of a geometric distribution is given by:
[tex]\[ \mu = \frac{1}{p} \][/tex]
Using [tex]\( p = 0.524 \)[/tex]:
[tex]\[ \mu = \frac{1}{0.524} \][/tex]
From the result obtained:
[tex]\[ \mu = 1.9083969465648853 \][/tex]
### (d) Comparison of the Mean with [tex]\( \frac{1}{p} \)[/tex]
We have already computed the mean as [tex]\( \frac{1}{p} = 1.9083969465648853 \)[/tex].
So, the mean calculated in part (c) [tex]\( \mu = 1.9083969465648853 \)[/tex] is indeed equal to [tex]\( \frac{1}{p} \)[/tex]. This confirms that the mean of a geometric distribution is [tex]\( \frac{1}{p} \)[/tex].
In conclusion, the expected number of free throw attempts Shaquille O'Neal would make before observing a successful free throw is approximately 1.908.
### (a) Probability [tex]\( P(3) \)[/tex]
Given:
- [tex]\( p = 0.524 \)[/tex] (Shaquille O'Neal's success rate)
- [tex]\( x = 3 \)[/tex] (we want the probability he makes his third attempt after missing two)
The probability [tex]\( P(x) \)[/tex] for a geometric distribution is given by:
[tex]\[ P(x) = p (1 - p)^{x-1} \][/tex]
So, for [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^{3-1} \][/tex]
From the result obtained:
[tex]\[ P(3) = 0.118725824 \][/tex]
### (b) Probability Distribution for [tex]\( x = 1, 2, \ldots, 10 \)[/tex]
We need to construct a probability distribution for [tex]\( x = 1 \)[/tex] to [tex]\( x = 10 \)[/tex]. The probability distribution [tex]\( P(x) \)[/tex] is:
1. For [tex]\( x = 1 \)[/tex]:
[tex]\[ P(1) = 0.524 \][/tex]
2. For [tex]\( x = 2 \)[/tex]:
[tex]\[ P(2) = 0.524 \times (1 - 0.524)^1 = 0.249424 \][/tex]
3. For [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^2 = 0.118725824 \][/tex]
4. For [tex]\( x = 4 \)[/tex]:
[tex]\[ P(4) = 0.524 \times (1 - 0.524)^3 = 0.056513492224 \][/tex]
5. For [tex]\( x = 5 \)[/tex]:
[tex]\[ P(5) = 0.524 \times (1 - 0.524)^4 = 0.026900422298624 \][/tex]
6. For [tex]\( x = 6 \)[/tex]:
[tex]\[ P(6) = 0.524 \times (1 - 0.524)^5 = 0.012804601014145 \][/tex]
7. For [tex]\( x = 7 \)[/tex]:
[tex]\[ P(7) = 0.524 \times (1 - 0.524)^6 = 0.006094990082733 \][/tex]
8. For [tex]\( x = 8 \)[/tex]:
[tex]\[ P(8) = 0.524 \times (1 - 0.524)^7 = 0.002901215279381 \][/tex]
9. For [tex]\( x = 9 \)[/tex]:
[tex]\[ P(9) = 0.524 \times (1 - 0.524)^8 = 0.001380978472985 \][/tex]
10. For [tex]\( x = 10 \)[/tex]:
[tex]\[ P(10) = 0.524 \times (1 - 0.524)^9 = 0.000657345753141 \][/tex]
Thus, the probability distribution is:
[tex]\[ [0.524, 0.249424, 0.118725824, 0.056513492224, 0.026900422298624, 0.012804601014145, 0.006094990082733, 0.002901215279381, 0.001380978472985, 0.000657345753141] \][/tex]
### (c) Mean of the Distribution
The mean [tex]\( \mu \)[/tex] of a geometric distribution is given by:
[tex]\[ \mu = \frac{1}{p} \][/tex]
Using [tex]\( p = 0.524 \)[/tex]:
[tex]\[ \mu = \frac{1}{0.524} \][/tex]
From the result obtained:
[tex]\[ \mu = 1.9083969465648853 \][/tex]
### (d) Comparison of the Mean with [tex]\( \frac{1}{p} \)[/tex]
We have already computed the mean as [tex]\( \frac{1}{p} = 1.9083969465648853 \)[/tex].
So, the mean calculated in part (c) [tex]\( \mu = 1.9083969465648853 \)[/tex] is indeed equal to [tex]\( \frac{1}{p} \)[/tex]. This confirms that the mean of a geometric distribution is [tex]\( \frac{1}{p} \)[/tex].
In conclusion, the expected number of free throw attempts Shaquille O'Neal would make before observing a successful free throw is approximately 1.908.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.