Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's find the mean of the given data step by step.
### Step 1: Identify the class intervals and their frequencies
Given the data:
- Class intervals: [tex]\(0-10\)[/tex], [tex]\(10-20\)[/tex], [tex]\(20-30\)[/tex], [tex]\(30-40\)[/tex], [tex]\(40-50\)[/tex]
- Frequencies: 9, 12, 15, 10, 14
### Step 2: Calculate the midpoint of each class interval
The midpoint (or class mark) of a class interval is calculated using the formula:
[tex]\[ \text{Midpoint} = \frac{\text{Lower limit} + \text{Upper limit}}{2} \][/tex]
- For [tex]\(0-10\)[/tex]: Midpoint = [tex]\(\frac{0 + 10}{2} = 5.0\)[/tex]
- For [tex]\(10-20\)[/tex]: Midpoint = [tex]\(\frac{10 + 20}{2} = 15.0\)[/tex]
- For [tex]\(20-30\)[/tex]: Midpoint = [tex]\(\frac{20 + 30}{2} = 25.0\)[/tex]
- For [tex]\(30-40\)[/tex]: Midpoint = [tex]\(\frac{30 + 40}{2} = 35.0\)[/tex]
- For [tex]\(40-50\)[/tex]: Midpoint = [tex]\(\frac{40 + 50}{2} = 45.0\)[/tex]
So, the midpoints are 5.0, 15.0, 25.0, 35.0, 45.0.
### Step 3: Calculate the total frequency
The total frequency is the sum of all frequencies:
[tex]\[ \text{Total frequency} = 9 + 12 + 15 + 10 + 14 = 60 \][/tex]
### Step 4: Calculate the weighted sum of midpoints
We calculate the weighted sum of midpoints by multiplying each midpoint by its corresponding frequency and then summing these products:
[tex]\[ \begin{align*} \text{Weighted sum} & = (5.0 \times 9) + (15.0 \times 12) + (25.0 \times 15) + (35.0 \times 10) + (45.0 \times 14) \\ & = 45.0 + 180.0 + 375.0 + 350.0 + 630.0 \\ & = 1580.0 \end{align*} \][/tex]
### Step 5: Calculate the mean
The mean is calculated by dividing the weighted sum of midpoints by the total frequency:
[tex]\[ \text{Mean} = \frac{\text{Weighted sum}}{\text{Total frequency}} = \frac{1580.0}{60} = 26.333333333333332 \][/tex]
### Final Answer
Therefore, the mean of the given data is approximately 26.33.
### Step 1: Identify the class intervals and their frequencies
Given the data:
- Class intervals: [tex]\(0-10\)[/tex], [tex]\(10-20\)[/tex], [tex]\(20-30\)[/tex], [tex]\(30-40\)[/tex], [tex]\(40-50\)[/tex]
- Frequencies: 9, 12, 15, 10, 14
### Step 2: Calculate the midpoint of each class interval
The midpoint (or class mark) of a class interval is calculated using the formula:
[tex]\[ \text{Midpoint} = \frac{\text{Lower limit} + \text{Upper limit}}{2} \][/tex]
- For [tex]\(0-10\)[/tex]: Midpoint = [tex]\(\frac{0 + 10}{2} = 5.0\)[/tex]
- For [tex]\(10-20\)[/tex]: Midpoint = [tex]\(\frac{10 + 20}{2} = 15.0\)[/tex]
- For [tex]\(20-30\)[/tex]: Midpoint = [tex]\(\frac{20 + 30}{2} = 25.0\)[/tex]
- For [tex]\(30-40\)[/tex]: Midpoint = [tex]\(\frac{30 + 40}{2} = 35.0\)[/tex]
- For [tex]\(40-50\)[/tex]: Midpoint = [tex]\(\frac{40 + 50}{2} = 45.0\)[/tex]
So, the midpoints are 5.0, 15.0, 25.0, 35.0, 45.0.
### Step 3: Calculate the total frequency
The total frequency is the sum of all frequencies:
[tex]\[ \text{Total frequency} = 9 + 12 + 15 + 10 + 14 = 60 \][/tex]
### Step 4: Calculate the weighted sum of midpoints
We calculate the weighted sum of midpoints by multiplying each midpoint by its corresponding frequency and then summing these products:
[tex]\[ \begin{align*} \text{Weighted sum} & = (5.0 \times 9) + (15.0 \times 12) + (25.0 \times 15) + (35.0 \times 10) + (45.0 \times 14) \\ & = 45.0 + 180.0 + 375.0 + 350.0 + 630.0 \\ & = 1580.0 \end{align*} \][/tex]
### Step 5: Calculate the mean
The mean is calculated by dividing the weighted sum of midpoints by the total frequency:
[tex]\[ \text{Mean} = \frac{\text{Weighted sum}}{\text{Total frequency}} = \frac{1580.0}{60} = 26.333333333333332 \][/tex]
### Final Answer
Therefore, the mean of the given data is approximately 26.33.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.