Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Use the distributive property to remove the parentheses.

[tex]\[ -8(-6x - 2u + 3) \][/tex]


Sagot :

Absolutely! Let's simplify the given expression using the distributive property step by step.

Expression: [tex]\(-8(-6x - 2u + 3)\)[/tex]

1. Distribute [tex]\(-8\)[/tex] across each term inside the parentheses:
- Multiply [tex]\(-8\)[/tex] by [tex]\(-6x\)[/tex]:
[tex]\[ -8 \times (-6x) = 48x \][/tex]

- Multiply [tex]\(-8\)[/tex] by [tex]\(-2u\)[/tex]:
[tex]\[ -8 \times (-2u) = 16u \][/tex]

- Multiply [tex]\(-8\)[/tex] by [tex]\(3\)[/tex]:
[tex]\[ -8 \times 3 = -24 \][/tex]

2. Combine all the terms obtained through distribution:
- So, the expression becomes:
[tex]\[ 48x + 16u - 24 \][/tex]

Therefore, after removing the parentheses using the distributive property, the simplified form of the expression [tex]\(-8(-6x - 2u + 3)\)[/tex] is:
[tex]\[ 48x + 16u - 24 \][/tex]