Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the differential equation
[tex]\[ y' + 9x e^y = 0, \][/tex]
we will proceed with the following steps:
1. Rewrite the equation: The given equation is
[tex]\[ y' + 9x e^y = 0. \][/tex]
First, let's isolate the derivative [tex]\( y' \)[/tex] (also written as [tex]\(\frac{dy}{dx}\)[/tex]):
[tex]\[ y' = -9x e^y. \][/tex]
2. Separate the variables: To solve this differential equation, we use the method of separation of variables. We will rewrite the equation so that all the [tex]\( y \)[/tex]-terms are on one side and all the [tex]\( x \)[/tex]-terms are on the other side:
[tex]\[ \frac{dy}{e^y} = -9x \, dx. \][/tex]
3. Integrate both sides: Now, we integrate both sides with respect to their respective variables. We start by integrating the left side with respect to [tex]\( y \)[/tex] and the right side with respect to [tex]\( x \)[/tex]:
[tex]\[ \int \frac{1}{e^y} \, dy = \int -9x \, dx. \][/tex]
The integral of [tex]\(\frac{1}{e^y}\)[/tex] with respect to [tex]\( y \)[/tex] is [tex]\( \int e^{-y} \, dy \)[/tex], which simplifies to:
[tex]\[ \int e^{-y} \, dy = -e^{-y}. \][/tex]
The integral of [tex]\(-9x\)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \int -9x \, dx = -9 \int x \, dx = -9 \left( \frac{x^2}{2} \right) = -\frac{9}{2} x^2. \][/tex]
4. Combine the integrals: Now we combine the results of the integrals:
[tex]\[ -e^{-y} = -\frac{9}{2} x^2 + C, \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
5. Solve for [tex]\( e^{-y} \)[/tex]: Multiply both sides of the equation by [tex]\(-1\)[/tex] to make the left side positive:
[tex]\[ e^{-y} = \frac{9}{2} x^2 - C. \][/tex]
6. Solve for [tex]\( y \)[/tex]: Take the natural logarithm of both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ -y = \ln\left( \frac{9}{2} x^2 - C \right). \][/tex]
Therefore:
[tex]\[ y = -\ln\left( \frac{9}{2} x^2 - C \right). \][/tex]
To simplify further, let [tex]\( C_1 = \frac{9}{2} x^2 - C \)[/tex], then we have:
[tex]\[ y = \ln\left( 1/C_1 \right) + \ln\left(2 \right). \][/tex]
Rewriting in a standard form, we get:
[tex]\[ \boxed{y(x) = \log \left(\frac{1}{C_1 + 9x^2} \right) + \log \left(2 \right)}. \][/tex]
So the final form of the solution to the differential equation is:
[tex]\[ y(x) = \log \left(\frac{1}{C_1 + 9x^2} \right) + \log \left(2 \right). \][/tex]
[tex]\[ y' + 9x e^y = 0, \][/tex]
we will proceed with the following steps:
1. Rewrite the equation: The given equation is
[tex]\[ y' + 9x e^y = 0. \][/tex]
First, let's isolate the derivative [tex]\( y' \)[/tex] (also written as [tex]\(\frac{dy}{dx}\)[/tex]):
[tex]\[ y' = -9x e^y. \][/tex]
2. Separate the variables: To solve this differential equation, we use the method of separation of variables. We will rewrite the equation so that all the [tex]\( y \)[/tex]-terms are on one side and all the [tex]\( x \)[/tex]-terms are on the other side:
[tex]\[ \frac{dy}{e^y} = -9x \, dx. \][/tex]
3. Integrate both sides: Now, we integrate both sides with respect to their respective variables. We start by integrating the left side with respect to [tex]\( y \)[/tex] and the right side with respect to [tex]\( x \)[/tex]:
[tex]\[ \int \frac{1}{e^y} \, dy = \int -9x \, dx. \][/tex]
The integral of [tex]\(\frac{1}{e^y}\)[/tex] with respect to [tex]\( y \)[/tex] is [tex]\( \int e^{-y} \, dy \)[/tex], which simplifies to:
[tex]\[ \int e^{-y} \, dy = -e^{-y}. \][/tex]
The integral of [tex]\(-9x\)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \int -9x \, dx = -9 \int x \, dx = -9 \left( \frac{x^2}{2} \right) = -\frac{9}{2} x^2. \][/tex]
4. Combine the integrals: Now we combine the results of the integrals:
[tex]\[ -e^{-y} = -\frac{9}{2} x^2 + C, \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
5. Solve for [tex]\( e^{-y} \)[/tex]: Multiply both sides of the equation by [tex]\(-1\)[/tex] to make the left side positive:
[tex]\[ e^{-y} = \frac{9}{2} x^2 - C. \][/tex]
6. Solve for [tex]\( y \)[/tex]: Take the natural logarithm of both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ -y = \ln\left( \frac{9}{2} x^2 - C \right). \][/tex]
Therefore:
[tex]\[ y = -\ln\left( \frac{9}{2} x^2 - C \right). \][/tex]
To simplify further, let [tex]\( C_1 = \frac{9}{2} x^2 - C \)[/tex], then we have:
[tex]\[ y = \ln\left( 1/C_1 \right) + \ln\left(2 \right). \][/tex]
Rewriting in a standard form, we get:
[tex]\[ \boxed{y(x) = \log \left(\frac{1}{C_1 + 9x^2} \right) + \log \left(2 \right)}. \][/tex]
So the final form of the solution to the differential equation is:
[tex]\[ y(x) = \log \left(\frac{1}{C_1 + 9x^2} \right) + \log \left(2 \right). \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.