Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the differential equation
[tex]\[ y' + 9x e^y = 0, \][/tex]
we will proceed with the following steps:
1. Rewrite the equation: The given equation is
[tex]\[ y' + 9x e^y = 0. \][/tex]
First, let's isolate the derivative [tex]\( y' \)[/tex] (also written as [tex]\(\frac{dy}{dx}\)[/tex]):
[tex]\[ y' = -9x e^y. \][/tex]
2. Separate the variables: To solve this differential equation, we use the method of separation of variables. We will rewrite the equation so that all the [tex]\( y \)[/tex]-terms are on one side and all the [tex]\( x \)[/tex]-terms are on the other side:
[tex]\[ \frac{dy}{e^y} = -9x \, dx. \][/tex]
3. Integrate both sides: Now, we integrate both sides with respect to their respective variables. We start by integrating the left side with respect to [tex]\( y \)[/tex] and the right side with respect to [tex]\( x \)[/tex]:
[tex]\[ \int \frac{1}{e^y} \, dy = \int -9x \, dx. \][/tex]
The integral of [tex]\(\frac{1}{e^y}\)[/tex] with respect to [tex]\( y \)[/tex] is [tex]\( \int e^{-y} \, dy \)[/tex], which simplifies to:
[tex]\[ \int e^{-y} \, dy = -e^{-y}. \][/tex]
The integral of [tex]\(-9x\)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \int -9x \, dx = -9 \int x \, dx = -9 \left( \frac{x^2}{2} \right) = -\frac{9}{2} x^2. \][/tex]
4. Combine the integrals: Now we combine the results of the integrals:
[tex]\[ -e^{-y} = -\frac{9}{2} x^2 + C, \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
5. Solve for [tex]\( e^{-y} \)[/tex]: Multiply both sides of the equation by [tex]\(-1\)[/tex] to make the left side positive:
[tex]\[ e^{-y} = \frac{9}{2} x^2 - C. \][/tex]
6. Solve for [tex]\( y \)[/tex]: Take the natural logarithm of both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ -y = \ln\left( \frac{9}{2} x^2 - C \right). \][/tex]
Therefore:
[tex]\[ y = -\ln\left( \frac{9}{2} x^2 - C \right). \][/tex]
To simplify further, let [tex]\( C_1 = \frac{9}{2} x^2 - C \)[/tex], then we have:
[tex]\[ y = \ln\left( 1/C_1 \right) + \ln\left(2 \right). \][/tex]
Rewriting in a standard form, we get:
[tex]\[ \boxed{y(x) = \log \left(\frac{1}{C_1 + 9x^2} \right) + \log \left(2 \right)}. \][/tex]
So the final form of the solution to the differential equation is:
[tex]\[ y(x) = \log \left(\frac{1}{C_1 + 9x^2} \right) + \log \left(2 \right). \][/tex]
[tex]\[ y' + 9x e^y = 0, \][/tex]
we will proceed with the following steps:
1. Rewrite the equation: The given equation is
[tex]\[ y' + 9x e^y = 0. \][/tex]
First, let's isolate the derivative [tex]\( y' \)[/tex] (also written as [tex]\(\frac{dy}{dx}\)[/tex]):
[tex]\[ y' = -9x e^y. \][/tex]
2. Separate the variables: To solve this differential equation, we use the method of separation of variables. We will rewrite the equation so that all the [tex]\( y \)[/tex]-terms are on one side and all the [tex]\( x \)[/tex]-terms are on the other side:
[tex]\[ \frac{dy}{e^y} = -9x \, dx. \][/tex]
3. Integrate both sides: Now, we integrate both sides with respect to their respective variables. We start by integrating the left side with respect to [tex]\( y \)[/tex] and the right side with respect to [tex]\( x \)[/tex]:
[tex]\[ \int \frac{1}{e^y} \, dy = \int -9x \, dx. \][/tex]
The integral of [tex]\(\frac{1}{e^y}\)[/tex] with respect to [tex]\( y \)[/tex] is [tex]\( \int e^{-y} \, dy \)[/tex], which simplifies to:
[tex]\[ \int e^{-y} \, dy = -e^{-y}. \][/tex]
The integral of [tex]\(-9x\)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \int -9x \, dx = -9 \int x \, dx = -9 \left( \frac{x^2}{2} \right) = -\frac{9}{2} x^2. \][/tex]
4. Combine the integrals: Now we combine the results of the integrals:
[tex]\[ -e^{-y} = -\frac{9}{2} x^2 + C, \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
5. Solve for [tex]\( e^{-y} \)[/tex]: Multiply both sides of the equation by [tex]\(-1\)[/tex] to make the left side positive:
[tex]\[ e^{-y} = \frac{9}{2} x^2 - C. \][/tex]
6. Solve for [tex]\( y \)[/tex]: Take the natural logarithm of both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ -y = \ln\left( \frac{9}{2} x^2 - C \right). \][/tex]
Therefore:
[tex]\[ y = -\ln\left( \frac{9}{2} x^2 - C \right). \][/tex]
To simplify further, let [tex]\( C_1 = \frac{9}{2} x^2 - C \)[/tex], then we have:
[tex]\[ y = \ln\left( 1/C_1 \right) + \ln\left(2 \right). \][/tex]
Rewriting in a standard form, we get:
[tex]\[ \boxed{y(x) = \log \left(\frac{1}{C_1 + 9x^2} \right) + \log \left(2 \right)}. \][/tex]
So the final form of the solution to the differential equation is:
[tex]\[ y(x) = \log \left(\frac{1}{C_1 + 9x^2} \right) + \log \left(2 \right). \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.