Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To analyze the function [tex]\( f(x) = \frac{\sqrt{2}}{x + 1} \)[/tex], we will look at its key characteristics and behavior for various values of [tex]\( x \)[/tex].
### 1. Domain of the Function
The function [tex]\( f(x) = \frac{\sqrt{2}}{x + 1} \)[/tex] is defined for all [tex]\( x \)[/tex] except where the denominator equals zero. The denominator [tex]\( x + 1 \)[/tex] equals zero when [tex]\( x = -1 \)[/tex]. Therefore, the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ \text{Domain} = \{ x \in \mathbb{R} \, | \, x \neq -1 \} \][/tex]
### 2. Evaluation of the Function at Specific Points
Let's compute [tex]\( f(x) \)[/tex] for some specific values of [tex]\( x \)[/tex]:
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = \frac{\sqrt{2}}{-2 + 1} = \frac{\sqrt{2}}{-1} = -\sqrt{2} \][/tex]
- For [tex]\( x = -1 \)[/tex] (note: [tex]\( x = -1 \)[/tex] is not in the domain)
[tex]\[ f(-1) = \text{undefined} \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{\sqrt{2}}{0 + 1} = \frac{\sqrt{2}}{1} = \sqrt{2} \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \frac{\sqrt{2}}{1 + 1} = \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = \frac{\sqrt{2}}{2 + 1} = \frac{\sqrt{2}}{3} \][/tex]
### 3. Behavior and Plotting
It’s also helpful to understand the general behavior of the function:
- As [tex]\( x \)[/tex] approaches -1 from the left (i.e., [tex]\( x \rightarrow -1^- \)[/tex]), [tex]\( f(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches -1 from the right (i.e., [tex]\( x \rightarrow -1^+ \)[/tex]), [tex]\( f(x) \rightarrow \infty \)[/tex].
- As [tex]\( x \)[/tex] becomes very large positively (i.e., [tex]\( x \rightarrow \infty \)[/tex]), [tex]\( f(x) \rightarrow 0^+ \)[/tex].
- As [tex]\( x \)[/tex] becomes very large negatively (i.e., [tex]\( x \rightarrow -\infty \)[/tex]), [tex]\( f(x) \rightarrow 0^- \)[/tex].
### 4. Summary
In conclusion, the function [tex]\( f(x) = \frac{\sqrt{2}}{x + 1} \)[/tex] is defined for all real numbers except [tex]\( x = -1 \)[/tex]. It exhibits a vertical asymptote at [tex]\( x = -1 \)[/tex] and approaches 0 as [tex]\( x \)[/tex] moves towards positive or negative infinity.
This analysis shows us the behavior and defines the significant points on the graph of the function.
### 1. Domain of the Function
The function [tex]\( f(x) = \frac{\sqrt{2}}{x + 1} \)[/tex] is defined for all [tex]\( x \)[/tex] except where the denominator equals zero. The denominator [tex]\( x + 1 \)[/tex] equals zero when [tex]\( x = -1 \)[/tex]. Therefore, the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ \text{Domain} = \{ x \in \mathbb{R} \, | \, x \neq -1 \} \][/tex]
### 2. Evaluation of the Function at Specific Points
Let's compute [tex]\( f(x) \)[/tex] for some specific values of [tex]\( x \)[/tex]:
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = \frac{\sqrt{2}}{-2 + 1} = \frac{\sqrt{2}}{-1} = -\sqrt{2} \][/tex]
- For [tex]\( x = -1 \)[/tex] (note: [tex]\( x = -1 \)[/tex] is not in the domain)
[tex]\[ f(-1) = \text{undefined} \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{\sqrt{2}}{0 + 1} = \frac{\sqrt{2}}{1} = \sqrt{2} \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \frac{\sqrt{2}}{1 + 1} = \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = \frac{\sqrt{2}}{2 + 1} = \frac{\sqrt{2}}{3} \][/tex]
### 3. Behavior and Plotting
It’s also helpful to understand the general behavior of the function:
- As [tex]\( x \)[/tex] approaches -1 from the left (i.e., [tex]\( x \rightarrow -1^- \)[/tex]), [tex]\( f(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches -1 from the right (i.e., [tex]\( x \rightarrow -1^+ \)[/tex]), [tex]\( f(x) \rightarrow \infty \)[/tex].
- As [tex]\( x \)[/tex] becomes very large positively (i.e., [tex]\( x \rightarrow \infty \)[/tex]), [tex]\( f(x) \rightarrow 0^+ \)[/tex].
- As [tex]\( x \)[/tex] becomes very large negatively (i.e., [tex]\( x \rightarrow -\infty \)[/tex]), [tex]\( f(x) \rightarrow 0^- \)[/tex].
### 4. Summary
In conclusion, the function [tex]\( f(x) = \frac{\sqrt{2}}{x + 1} \)[/tex] is defined for all real numbers except [tex]\( x = -1 \)[/tex]. It exhibits a vertical asymptote at [tex]\( x = -1 \)[/tex] and approaches 0 as [tex]\( x \)[/tex] moves towards positive or negative infinity.
This analysis shows us the behavior and defines the significant points on the graph of the function.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.