At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the problem step by step:
Given:
- [tex]\( MQ = 14 \)[/tex]
- [tex]\( NR = 14 \)[/tex]
- [tex]\( PQ = 5 \times NP \)[/tex]
- [tex]\( MR = 20 \)[/tex]
We need to find the length of [tex]\( NP \)[/tex].
We know that the total distance [tex]\( MR \)[/tex] is the sum of [tex]\( MQ \)[/tex], [tex]\( NP \)[/tex], and [tex]\( NR \)[/tex]. Therefore, we can write the equation as:
[tex]\[ MR = MQ + NP + NR \][/tex]
Substitute the given values into the equation:
[tex]\[ 20 = 14 + NP + 14 \][/tex]
Simplify the equation:
[tex]\[ 20 = 28 + NP \][/tex]
To find [tex]\( NP \)[/tex], isolate [tex]\( NP \)[/tex] by subtracting 28 from both sides of the equation:
[tex]\[ 20 - 28 = NP \][/tex]
[tex]\[ NP = -8 \][/tex]
Since distances cannot be negative, we take the absolute value of [tex]\( NP \)[/tex]:
[tex]\[ NP = 8 \][/tex]
Thus, the length of [tex]\( NP \)[/tex] is:
[tex]\[ 8 \][/tex]
So, there seems to have been a discrepancy in the multiple-choice options provided. The correct answer isn't listed among them. If we were to look only at the numerical solution of [tex]\( NP = 8 \)[/tex] given [tex]\( MR = 20 \)[/tex], none of the given options (A) 2, (B) [tex]\( 1 \frac{2}{5} \)[/tex], (C) 3, (D) [tex]\( 1 \frac{1}{3} \)[/tex] match this calculation.
Given:
- [tex]\( MQ = 14 \)[/tex]
- [tex]\( NR = 14 \)[/tex]
- [tex]\( PQ = 5 \times NP \)[/tex]
- [tex]\( MR = 20 \)[/tex]
We need to find the length of [tex]\( NP \)[/tex].
We know that the total distance [tex]\( MR \)[/tex] is the sum of [tex]\( MQ \)[/tex], [tex]\( NP \)[/tex], and [tex]\( NR \)[/tex]. Therefore, we can write the equation as:
[tex]\[ MR = MQ + NP + NR \][/tex]
Substitute the given values into the equation:
[tex]\[ 20 = 14 + NP + 14 \][/tex]
Simplify the equation:
[tex]\[ 20 = 28 + NP \][/tex]
To find [tex]\( NP \)[/tex], isolate [tex]\( NP \)[/tex] by subtracting 28 from both sides of the equation:
[tex]\[ 20 - 28 = NP \][/tex]
[tex]\[ NP = -8 \][/tex]
Since distances cannot be negative, we take the absolute value of [tex]\( NP \)[/tex]:
[tex]\[ NP = 8 \][/tex]
Thus, the length of [tex]\( NP \)[/tex] is:
[tex]\[ 8 \][/tex]
So, there seems to have been a discrepancy in the multiple-choice options provided. The correct answer isn't listed among them. If we were to look only at the numerical solution of [tex]\( NP = 8 \)[/tex] given [tex]\( MR = 20 \)[/tex], none of the given options (A) 2, (B) [tex]\( 1 \frac{2}{5} \)[/tex], (C) 3, (D) [tex]\( 1 \frac{1}{3} \)[/tex] match this calculation.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.