Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To divide a complex number [tex]\( z \)[/tex] by another complex number, specifically of the form [tex]\( r (\cos \theta + i \sin \theta) \)[/tex], we recall operations on complex numbers in polar form.
1. Complex Number in Polar Form:
- Any complex number [tex]\( z \)[/tex] can be represented in polar form as [tex]\( z = Re^{i\varphi} \)[/tex] where [tex]\( R \)[/tex] is the magnitude (absolute value) and [tex]\( \varphi \)[/tex] is the argument (angle).
2. Dividing Complex Numbers:
- Given two complex numbers [tex]\( z_1 = R_1 e^{i \varphi_1} \)[/tex] and [tex]\( z_2 = R_2 e^{i \varphi_2} \)[/tex], their quotient is given by:
[tex]\[ \frac{z_1}{z_2} = \frac{R_1 e^{i \varphi_1}}{R_2 e^{i \varphi_2}} = \frac{R_1}{R_2} e^{i (\varphi_1 - \varphi_2)} \][/tex]
- This simplifies to scaling the magnitude [tex]\( R_1 \)[/tex] by a factor of [tex]\( \frac{1}{R_2} \)[/tex] and subtracting the angle [tex]\( \varphi_2 \)[/tex] from [tex]\( \varphi_1 \)[/tex].
3. Rephrasing for [tex]\( r (\cos \theta + i \sin \theta) \)[/tex]:
- The complex number [tex]\( r (\cos \theta + i \sin \theta) \)[/tex] can be written in polar form as [tex]\( r e^{i \theta} \)[/tex].
- So, if [tex]\( z = Re^{i\varphi} \)[/tex], then dividing [tex]\( z \)[/tex] by [tex]\( r (\cos \theta + i \sin \theta) \)[/tex] becomes:
[tex]\[ \frac{z}{r (\cos \theta + i \sin \theta)} = \frac{R e^{i \varphi}}{r e^{i \theta}} = \frac{R}{r} e^{i (\varphi - \theta)} \][/tex]
4. Analyzing the Effect:
- Scaling: The magnitude [tex]\( R \)[/tex] is scaled by a factor of [tex]\( \frac{1}{r} \)[/tex].
- Rotation: The angle [tex]\( \varphi \)[/tex] is rotated by [tex]\( -\theta \)[/tex], which is clockwise by [tex]\( \theta \)[/tex] (because subtracting [tex]\(\theta\)[/tex] moves the angle in the clockwise direction).
Thus, the correct description of the effect of dividing a complex number [tex]\( z \)[/tex] by [tex]\( r (\cos \theta + i \sin \theta) \)[/tex] is:
"Scale by a factor of [tex]\(\frac{1}{r}\)[/tex] and rotate clockwise by [tex]\(\theta\)[/tex]."
1. Complex Number in Polar Form:
- Any complex number [tex]\( z \)[/tex] can be represented in polar form as [tex]\( z = Re^{i\varphi} \)[/tex] where [tex]\( R \)[/tex] is the magnitude (absolute value) and [tex]\( \varphi \)[/tex] is the argument (angle).
2. Dividing Complex Numbers:
- Given two complex numbers [tex]\( z_1 = R_1 e^{i \varphi_1} \)[/tex] and [tex]\( z_2 = R_2 e^{i \varphi_2} \)[/tex], their quotient is given by:
[tex]\[ \frac{z_1}{z_2} = \frac{R_1 e^{i \varphi_1}}{R_2 e^{i \varphi_2}} = \frac{R_1}{R_2} e^{i (\varphi_1 - \varphi_2)} \][/tex]
- This simplifies to scaling the magnitude [tex]\( R_1 \)[/tex] by a factor of [tex]\( \frac{1}{R_2} \)[/tex] and subtracting the angle [tex]\( \varphi_2 \)[/tex] from [tex]\( \varphi_1 \)[/tex].
3. Rephrasing for [tex]\( r (\cos \theta + i \sin \theta) \)[/tex]:
- The complex number [tex]\( r (\cos \theta + i \sin \theta) \)[/tex] can be written in polar form as [tex]\( r e^{i \theta} \)[/tex].
- So, if [tex]\( z = Re^{i\varphi} \)[/tex], then dividing [tex]\( z \)[/tex] by [tex]\( r (\cos \theta + i \sin \theta) \)[/tex] becomes:
[tex]\[ \frac{z}{r (\cos \theta + i \sin \theta)} = \frac{R e^{i \varphi}}{r e^{i \theta}} = \frac{R}{r} e^{i (\varphi - \theta)} \][/tex]
4. Analyzing the Effect:
- Scaling: The magnitude [tex]\( R \)[/tex] is scaled by a factor of [tex]\( \frac{1}{r} \)[/tex].
- Rotation: The angle [tex]\( \varphi \)[/tex] is rotated by [tex]\( -\theta \)[/tex], which is clockwise by [tex]\( \theta \)[/tex] (because subtracting [tex]\(\theta\)[/tex] moves the angle in the clockwise direction).
Thus, the correct description of the effect of dividing a complex number [tex]\( z \)[/tex] by [tex]\( r (\cos \theta + i \sin \theta) \)[/tex] is:
"Scale by a factor of [tex]\(\frac{1}{r}\)[/tex] and rotate clockwise by [tex]\(\theta\)[/tex]."
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.