Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which equation represents the line that is parallel to [tex]\(y = 3\)[/tex] and passes through the point [tex]\((-2, -8)\)[/tex], let's go through the problem step by step.
1. Understanding the given line [tex]\(y = 3\)[/tex]:
- The equation [tex]\(y = 3\)[/tex] is a horizontal line where the y-coordinate is constant at 3 for all values of x.
- This line is parallel to any other horizontal line where the y-coordinate is also constant.
2. Equation of a line parallel to [tex]\(y = 3\)[/tex]:
- A line parallel to [tex]\(y = 3\)[/tex] must also be a horizontal line, meaning it must have a constant y-coordinate.
3. Finding the line that passes through the point [tex]\((-2, -8)\)[/tex]:
- The line we are looking for must go through the point with coordinates [tex]\((-2, -8)\)[/tex].
- Since this line must be parallel to [tex]\(y = 3\)[/tex], it must be a horizontal line.
- A horizontal line passing through [tex]\((-2, -8)\)[/tex] will have the same y-coordinate for all points, which is [tex]\(-8\)[/tex].
4. Formulating the equation of the desired line:
- Therefore, the equation of the line that is parallel to [tex]\(y = 3\)[/tex] and passes through [tex]\((-2, -8)\)[/tex] is [tex]\(y = -8\)[/tex].
5. Choosing the correct option:
- The correct equation is [tex]\(y = -8\)[/tex].
Thus, the answer is:
C. [tex]\(y = -8\)[/tex]
1. Understanding the given line [tex]\(y = 3\)[/tex]:
- The equation [tex]\(y = 3\)[/tex] is a horizontal line where the y-coordinate is constant at 3 for all values of x.
- This line is parallel to any other horizontal line where the y-coordinate is also constant.
2. Equation of a line parallel to [tex]\(y = 3\)[/tex]:
- A line parallel to [tex]\(y = 3\)[/tex] must also be a horizontal line, meaning it must have a constant y-coordinate.
3. Finding the line that passes through the point [tex]\((-2, -8)\)[/tex]:
- The line we are looking for must go through the point with coordinates [tex]\((-2, -8)\)[/tex].
- Since this line must be parallel to [tex]\(y = 3\)[/tex], it must be a horizontal line.
- A horizontal line passing through [tex]\((-2, -8)\)[/tex] will have the same y-coordinate for all points, which is [tex]\(-8\)[/tex].
4. Formulating the equation of the desired line:
- Therefore, the equation of the line that is parallel to [tex]\(y = 3\)[/tex] and passes through [tex]\((-2, -8)\)[/tex] is [tex]\(y = -8\)[/tex].
5. Choosing the correct option:
- The correct equation is [tex]\(y = -8\)[/tex].
Thus, the answer is:
C. [tex]\(y = -8\)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.