Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the problem of identifying which point on the complex plane represents the given complex number in polar form: [tex]\( 4 \sqrt{2}\left(\cos \left(\frac{5 \pi}{4}\right)+i \sin \left(\frac{5 \pi}{4}\right)\right) \)[/tex].
The complex number is given in polar form: [tex]\( r (\cos(\theta) + i \sin(\theta)) \)[/tex].
In this case:
- [tex]\( r = 4 \sqrt{2} \)[/tex]
- [tex]\( \theta = \frac{5\pi}{4} \)[/tex]
First, we will convert the given complex number from polar to rectangular form.
1. Calculate [tex]\( \cos\left(\frac{5\pi}{4}\right) \)[/tex] and [tex]\( \sin\left(\frac{5\pi}{4}\right) \)[/tex]:
The angle [tex]\( \frac{5\pi}{4} \)[/tex] lies in the third quadrant, where both cosine and sine are negative.
- [tex]\( \cos\left(\frac{5\ \pi}{4}\right) = -\frac{\sqrt{2}}{2} \)[/tex]
- [tex]\( \sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} \)[/tex]
2. Formulate the real and imaginary parts:
[tex]\( x = r \cos(\theta) = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} \)[/tex]
[tex]\[ x = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} = 4 \cdot -1 = -4 \][/tex]
[tex]\( y = r \sin(\theta) = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} \)[/tex]
[tex]\[ y = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} = 4 \cdot -1 = -4 \][/tex]
The rectangular form of the given complex number is therefore [tex]\( -4 - 4i \)[/tex].
3. Determine the point on the complex plane:
We have calculated the rectangular form of the complex number to be [tex]\( -4 - 4i \)[/tex]. We now need to compare this point to the given points:
- Point [tex]\(A\)[/tex] should be at coordinates [tex]\((x_1, y_1)\)[/tex]
- Point [tex]\(B\)[/tex] should be at coordinates [tex]\((x_2, y_2)\)[/tex]
- Point [tex]\(C\)[/tex] should be at coordinates [tex]\((x_3, y_3)\)[/tex]
- Point [tex]\(D\)[/tex] should be at coordinates [tex]\((x_4, y_4)\)[/tex]
Assuming the given points [tex]\(A, B, C, D\)[/tex] on the complex plane were provided in the problem statement, we would compare each one to the calculated coordinate [tex]\((-4, -4)\)[/tex].
The point on the complex plane that represents [tex]\( 4 \sqrt{2}\left(\cos \left(\frac{5 \pi}{4}\right)+i \sin \left(\frac{5 \pi}{4}\right)\right) \)[/tex] is the one with coordinates [tex]\((-4, -4)\)[/tex]. Based on this, you can identify the specific point [tex]\(A, B, C,\)[/tex] or [tex]\(D\)[/tex] from the provided information.
The complex number is given in polar form: [tex]\( r (\cos(\theta) + i \sin(\theta)) \)[/tex].
In this case:
- [tex]\( r = 4 \sqrt{2} \)[/tex]
- [tex]\( \theta = \frac{5\pi}{4} \)[/tex]
First, we will convert the given complex number from polar to rectangular form.
1. Calculate [tex]\( \cos\left(\frac{5\pi}{4}\right) \)[/tex] and [tex]\( \sin\left(\frac{5\pi}{4}\right) \)[/tex]:
The angle [tex]\( \frac{5\pi}{4} \)[/tex] lies in the third quadrant, where both cosine and sine are negative.
- [tex]\( \cos\left(\frac{5\ \pi}{4}\right) = -\frac{\sqrt{2}}{2} \)[/tex]
- [tex]\( \sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} \)[/tex]
2. Formulate the real and imaginary parts:
[tex]\( x = r \cos(\theta) = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} \)[/tex]
[tex]\[ x = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} = 4 \cdot -1 = -4 \][/tex]
[tex]\( y = r \sin(\theta) = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} \)[/tex]
[tex]\[ y = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} = 4 \cdot -1 = -4 \][/tex]
The rectangular form of the given complex number is therefore [tex]\( -4 - 4i \)[/tex].
3. Determine the point on the complex plane:
We have calculated the rectangular form of the complex number to be [tex]\( -4 - 4i \)[/tex]. We now need to compare this point to the given points:
- Point [tex]\(A\)[/tex] should be at coordinates [tex]\((x_1, y_1)\)[/tex]
- Point [tex]\(B\)[/tex] should be at coordinates [tex]\((x_2, y_2)\)[/tex]
- Point [tex]\(C\)[/tex] should be at coordinates [tex]\((x_3, y_3)\)[/tex]
- Point [tex]\(D\)[/tex] should be at coordinates [tex]\((x_4, y_4)\)[/tex]
Assuming the given points [tex]\(A, B, C, D\)[/tex] on the complex plane were provided in the problem statement, we would compare each one to the calculated coordinate [tex]\((-4, -4)\)[/tex].
The point on the complex plane that represents [tex]\( 4 \sqrt{2}\left(\cos \left(\frac{5 \pi}{4}\right)+i \sin \left(\frac{5 \pi}{4}\right)\right) \)[/tex] is the one with coordinates [tex]\((-4, -4)\)[/tex]. Based on this, you can identify the specific point [tex]\(A, B, C,\)[/tex] or [tex]\(D\)[/tex] from the provided information.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.