Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the problem of identifying which point on the complex plane represents the given complex number in polar form: [tex]\( 4 \sqrt{2}\left(\cos \left(\frac{5 \pi}{4}\right)+i \sin \left(\frac{5 \pi}{4}\right)\right) \)[/tex].
The complex number is given in polar form: [tex]\( r (\cos(\theta) + i \sin(\theta)) \)[/tex].
In this case:
- [tex]\( r = 4 \sqrt{2} \)[/tex]
- [tex]\( \theta = \frac{5\pi}{4} \)[/tex]
First, we will convert the given complex number from polar to rectangular form.
1. Calculate [tex]\( \cos\left(\frac{5\pi}{4}\right) \)[/tex] and [tex]\( \sin\left(\frac{5\pi}{4}\right) \)[/tex]:
The angle [tex]\( \frac{5\pi}{4} \)[/tex] lies in the third quadrant, where both cosine and sine are negative.
- [tex]\( \cos\left(\frac{5\ \pi}{4}\right) = -\frac{\sqrt{2}}{2} \)[/tex]
- [tex]\( \sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} \)[/tex]
2. Formulate the real and imaginary parts:
[tex]\( x = r \cos(\theta) = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} \)[/tex]
[tex]\[ x = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} = 4 \cdot -1 = -4 \][/tex]
[tex]\( y = r \sin(\theta) = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} \)[/tex]
[tex]\[ y = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} = 4 \cdot -1 = -4 \][/tex]
The rectangular form of the given complex number is therefore [tex]\( -4 - 4i \)[/tex].
3. Determine the point on the complex plane:
We have calculated the rectangular form of the complex number to be [tex]\( -4 - 4i \)[/tex]. We now need to compare this point to the given points:
- Point [tex]\(A\)[/tex] should be at coordinates [tex]\((x_1, y_1)\)[/tex]
- Point [tex]\(B\)[/tex] should be at coordinates [tex]\((x_2, y_2)\)[/tex]
- Point [tex]\(C\)[/tex] should be at coordinates [tex]\((x_3, y_3)\)[/tex]
- Point [tex]\(D\)[/tex] should be at coordinates [tex]\((x_4, y_4)\)[/tex]
Assuming the given points [tex]\(A, B, C, D\)[/tex] on the complex plane were provided in the problem statement, we would compare each one to the calculated coordinate [tex]\((-4, -4)\)[/tex].
The point on the complex plane that represents [tex]\( 4 \sqrt{2}\left(\cos \left(\frac{5 \pi}{4}\right)+i \sin \left(\frac{5 \pi}{4}\right)\right) \)[/tex] is the one with coordinates [tex]\((-4, -4)\)[/tex]. Based on this, you can identify the specific point [tex]\(A, B, C,\)[/tex] or [tex]\(D\)[/tex] from the provided information.
The complex number is given in polar form: [tex]\( r (\cos(\theta) + i \sin(\theta)) \)[/tex].
In this case:
- [tex]\( r = 4 \sqrt{2} \)[/tex]
- [tex]\( \theta = \frac{5\pi}{4} \)[/tex]
First, we will convert the given complex number from polar to rectangular form.
1. Calculate [tex]\( \cos\left(\frac{5\pi}{4}\right) \)[/tex] and [tex]\( \sin\left(\frac{5\pi}{4}\right) \)[/tex]:
The angle [tex]\( \frac{5\pi}{4} \)[/tex] lies in the third quadrant, where both cosine and sine are negative.
- [tex]\( \cos\left(\frac{5\ \pi}{4}\right) = -\frac{\sqrt{2}}{2} \)[/tex]
- [tex]\( \sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} \)[/tex]
2. Formulate the real and imaginary parts:
[tex]\( x = r \cos(\theta) = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} \)[/tex]
[tex]\[ x = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} = 4 \cdot -1 = -4 \][/tex]
[tex]\( y = r \sin(\theta) = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} \)[/tex]
[tex]\[ y = 4 \sqrt{2} \cdot -\frac{\sqrt{2}}{2} = 4 \cdot -1 = -4 \][/tex]
The rectangular form of the given complex number is therefore [tex]\( -4 - 4i \)[/tex].
3. Determine the point on the complex plane:
We have calculated the rectangular form of the complex number to be [tex]\( -4 - 4i \)[/tex]. We now need to compare this point to the given points:
- Point [tex]\(A\)[/tex] should be at coordinates [tex]\((x_1, y_1)\)[/tex]
- Point [tex]\(B\)[/tex] should be at coordinates [tex]\((x_2, y_2)\)[/tex]
- Point [tex]\(C\)[/tex] should be at coordinates [tex]\((x_3, y_3)\)[/tex]
- Point [tex]\(D\)[/tex] should be at coordinates [tex]\((x_4, y_4)\)[/tex]
Assuming the given points [tex]\(A, B, C, D\)[/tex] on the complex plane were provided in the problem statement, we would compare each one to the calculated coordinate [tex]\((-4, -4)\)[/tex].
The point on the complex plane that represents [tex]\( 4 \sqrt{2}\left(\cos \left(\frac{5 \pi}{4}\right)+i \sin \left(\frac{5 \pi}{4}\right)\right) \)[/tex] is the one with coordinates [tex]\((-4, -4)\)[/tex]. Based on this, you can identify the specific point [tex]\(A, B, C,\)[/tex] or [tex]\(D\)[/tex] from the provided information.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.