Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem, we begin by using the distributive property (also known as the FOIL method for binomials) to expand the given polynomial expression:
[tex]\[ (2x^5 + 3y^4)(-4x^2 + 9y^4) \][/tex]
Let's distribute each term in the first parenthesis to each term in the second parenthesis:
1. Multiply [tex]\(2x^5\)[/tex] by [tex]\(-4x^2\)[/tex]:
[tex]\[ 2x^5 \cdot (-4x^2) = -8x^{5+2} = -8x^7 \][/tex]
2. Multiply [tex]\(2x^5\)[/tex] by [tex]\(9y^4\)[/tex]:
[tex]\[ 2x^5 \cdot 9y^4 = 18x^5y^4 \][/tex]
3. Multiply [tex]\(3y^4\)[/tex] by [tex]\(-4x^2\)[/tex]:
[tex]\[ 3y^4 \cdot (-4x^2) = -12x^2y^4 \][/tex]
4. Multiply [tex]\(3y^4\)[/tex] by [tex]\(9y^4\)[/tex]:
[tex]\[ 3y^4 \cdot 9y^4 = 27y^{4+4} = 27y^8 \][/tex]
Now, let's combine the results from all multiplications:
[tex]\[ -8x^7 + 18x^5y^4 - 12x^2y^4 + 27y^8 \][/tex]
Therefore, the expression equivalent to [tex]\((2x^5 + 3y^4)(-4x^2 + 9y^4)\)[/tex] is:
[tex]\[ \boxed{-8x^7 + 18x^5y^4 - 12x^2y^4 + 27y^8} \][/tex]
Thus, the correct answer is:
A. [tex]\(-8x^7 + 18x^5y^4 - 12x^2y^4 + 27y^8\)[/tex]
[tex]\[ (2x^5 + 3y^4)(-4x^2 + 9y^4) \][/tex]
Let's distribute each term in the first parenthesis to each term in the second parenthesis:
1. Multiply [tex]\(2x^5\)[/tex] by [tex]\(-4x^2\)[/tex]:
[tex]\[ 2x^5 \cdot (-4x^2) = -8x^{5+2} = -8x^7 \][/tex]
2. Multiply [tex]\(2x^5\)[/tex] by [tex]\(9y^4\)[/tex]:
[tex]\[ 2x^5 \cdot 9y^4 = 18x^5y^4 \][/tex]
3. Multiply [tex]\(3y^4\)[/tex] by [tex]\(-4x^2\)[/tex]:
[tex]\[ 3y^4 \cdot (-4x^2) = -12x^2y^4 \][/tex]
4. Multiply [tex]\(3y^4\)[/tex] by [tex]\(9y^4\)[/tex]:
[tex]\[ 3y^4 \cdot 9y^4 = 27y^{4+4} = 27y^8 \][/tex]
Now, let's combine the results from all multiplications:
[tex]\[ -8x^7 + 18x^5y^4 - 12x^2y^4 + 27y^8 \][/tex]
Therefore, the expression equivalent to [tex]\((2x^5 + 3y^4)(-4x^2 + 9y^4)\)[/tex] is:
[tex]\[ \boxed{-8x^7 + 18x^5y^4 - 12x^2y^4 + 27y^8} \][/tex]
Thus, the correct answer is:
A. [tex]\(-8x^7 + 18x^5y^4 - 12x^2y^4 + 27y^8\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.