At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the coordinates of the other endpoint of a line segment given the midpoint and one endpoint, you can use the midpoint formula. The midpoint formula in a 2D plane is given by:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the two endpoints, and the result is the coordinates of the midpoint.
Given:
- Midpoint [tex]\((x_m, y_m) = (11, -5)\)[/tex]
- One endpoint [tex]\((x_1, y_1) = (-4, -8)\)[/tex]
We need to find the coordinates of the other endpoint [tex]\((x_2, y_2)\)[/tex].
We can set up the following equations based on the midpoint formula:
[tex]\[ x_m = \frac{x_1 + x_2}{2} \implies 11 = \frac{-4 + x_2}{2} \][/tex]
[tex]\[ y_m = \frac{y_1 + y_2}{2} \implies -5 = \frac{-8 + y_2}{2} \][/tex]
Solve the first equation for [tex]\(x_2\)[/tex]:
[tex]\[ 11 = \frac{-4 + x_2}{2} \][/tex]
[tex]\[ 22 = -4 + x_2 \quad \text{(Multiplying both sides by 2)} \][/tex]
[tex]\[ x_2 = 26 \][/tex]
Solve the second equation for [tex]\(y_2\)[/tex]:
[tex]\[ -5 = \frac{-8 + y_2}{2} \][/tex]
[tex]\[ -10 = -8 + y_2 \quad \text{(Multiplying both sides by 2)} \][/tex]
[tex]\[ y_2 = -2 \][/tex]
Therefore, the coordinates of the other endpoint are [tex]\((26, -2)\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{(26, -2)} \][/tex]
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the two endpoints, and the result is the coordinates of the midpoint.
Given:
- Midpoint [tex]\((x_m, y_m) = (11, -5)\)[/tex]
- One endpoint [tex]\((x_1, y_1) = (-4, -8)\)[/tex]
We need to find the coordinates of the other endpoint [tex]\((x_2, y_2)\)[/tex].
We can set up the following equations based on the midpoint formula:
[tex]\[ x_m = \frac{x_1 + x_2}{2} \implies 11 = \frac{-4 + x_2}{2} \][/tex]
[tex]\[ y_m = \frac{y_1 + y_2}{2} \implies -5 = \frac{-8 + y_2}{2} \][/tex]
Solve the first equation for [tex]\(x_2\)[/tex]:
[tex]\[ 11 = \frac{-4 + x_2}{2} \][/tex]
[tex]\[ 22 = -4 + x_2 \quad \text{(Multiplying both sides by 2)} \][/tex]
[tex]\[ x_2 = 26 \][/tex]
Solve the second equation for [tex]\(y_2\)[/tex]:
[tex]\[ -5 = \frac{-8 + y_2}{2} \][/tex]
[tex]\[ -10 = -8 + y_2 \quad \text{(Multiplying both sides by 2)} \][/tex]
[tex]\[ y_2 = -2 \][/tex]
Therefore, the coordinates of the other endpoint are [tex]\((26, -2)\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{(26, -2)} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.