Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the completely factored form of the polynomial [tex]\(2x^5 + 12x^3 - 54x\)[/tex], let's go through the steps systematically:
1. Extract the Greatest Common Factor (GCF):
The given polynomial is [tex]\(2x^5 + 12x^3 - 54x\)[/tex].
The GCF of the coefficients [tex]\(2, 12,\)[/tex] and [tex]\(-54\)[/tex] is [tex]\(2\)[/tex]. For the variable part, the GCF is [tex]\(x\)[/tex]. Hence, we factor out [tex]\(2x\)[/tex] from the polynomial:
[tex]\[ 2x(x^4 + 6x^2 - 27) \][/tex]
2. Factor the Quartic Polynomial [tex]\(x^4 + 6x^2 - 27\)[/tex]:
We can think of [tex]\(x^4 + 6x^2 - 27\)[/tex] as a quadratic polynomial in terms of [tex]\(x^2\)[/tex]. Let [tex]\(y = x^2\)[/tex], then the polynomial becomes:
[tex]\[ y^2 + 6y - 27 \][/tex]
3. Factor the Quadratic Polynomial:
We need to find two numbers that multiply to [tex]\(-27\)[/tex] and add up to [tex]\(6\)[/tex]. These numbers are [tex]\(9\)[/tex] and [tex]\(-3\)[/tex]:
[tex]\[ y^2 + 9y - 3y - 27 \][/tex]
Grouping the terms and factoring by grouping:
[tex]\[ y(y + 9) - 3(y + 9) \][/tex]
[tex]\[ (y - 3)(y + 9) \][/tex]
Substituting [tex]\(y = x^2\)[/tex] back into the factored form:
[tex]\[ (x^2 - 3)(x^2 + 9) \][/tex]
4. Combine the Factored Forms:
Multiplying our GCF back into the factored form of the quartic polynomial:
[tex]\[ 2x(x^2 - 3)(x^2 + 9) \][/tex]
Therefore, the completely factored form of the polynomial [tex]\(2x^5 + 12x^3 - 54x\)[/tex] is:
[tex]\[ 2x(x^2 - 3)(x^2 + 9) \][/tex]
After comparing to the given options:
- A. [tex]\(2x(x^2 + 3)(x + 9)(x - 9)\)[/tex]
- B. [tex]\(2x(x - 3)(x + 9)\)[/tex]
- C. [tex]\(2x(x^2 + 3)(x + 3)(x - 3)\)[/tex]
- D. [tex]\(2x(x^2 - 3)(x^2 + 9)\)[/tex]
The correct answer is:
[tex]\[ \boxed{D} \][/tex]
1. Extract the Greatest Common Factor (GCF):
The given polynomial is [tex]\(2x^5 + 12x^3 - 54x\)[/tex].
The GCF of the coefficients [tex]\(2, 12,\)[/tex] and [tex]\(-54\)[/tex] is [tex]\(2\)[/tex]. For the variable part, the GCF is [tex]\(x\)[/tex]. Hence, we factor out [tex]\(2x\)[/tex] from the polynomial:
[tex]\[ 2x(x^4 + 6x^2 - 27) \][/tex]
2. Factor the Quartic Polynomial [tex]\(x^4 + 6x^2 - 27\)[/tex]:
We can think of [tex]\(x^4 + 6x^2 - 27\)[/tex] as a quadratic polynomial in terms of [tex]\(x^2\)[/tex]. Let [tex]\(y = x^2\)[/tex], then the polynomial becomes:
[tex]\[ y^2 + 6y - 27 \][/tex]
3. Factor the Quadratic Polynomial:
We need to find two numbers that multiply to [tex]\(-27\)[/tex] and add up to [tex]\(6\)[/tex]. These numbers are [tex]\(9\)[/tex] and [tex]\(-3\)[/tex]:
[tex]\[ y^2 + 9y - 3y - 27 \][/tex]
Grouping the terms and factoring by grouping:
[tex]\[ y(y + 9) - 3(y + 9) \][/tex]
[tex]\[ (y - 3)(y + 9) \][/tex]
Substituting [tex]\(y = x^2\)[/tex] back into the factored form:
[tex]\[ (x^2 - 3)(x^2 + 9) \][/tex]
4. Combine the Factored Forms:
Multiplying our GCF back into the factored form of the quartic polynomial:
[tex]\[ 2x(x^2 - 3)(x^2 + 9) \][/tex]
Therefore, the completely factored form of the polynomial [tex]\(2x^5 + 12x^3 - 54x\)[/tex] is:
[tex]\[ 2x(x^2 - 3)(x^2 + 9) \][/tex]
After comparing to the given options:
- A. [tex]\(2x(x^2 + 3)(x + 9)(x - 9)\)[/tex]
- B. [tex]\(2x(x - 3)(x + 9)\)[/tex]
- C. [tex]\(2x(x^2 + 3)(x + 3)(x - 3)\)[/tex]
- D. [tex]\(2x(x^2 - 3)(x^2 + 9)\)[/tex]
The correct answer is:
[tex]\[ \boxed{D} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.