Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the completely factored form of the polynomial [tex]\(2x^5 + 12x^3 - 54x\)[/tex], let's go through the steps systematically:
1. Extract the Greatest Common Factor (GCF):
The given polynomial is [tex]\(2x^5 + 12x^3 - 54x\)[/tex].
The GCF of the coefficients [tex]\(2, 12,\)[/tex] and [tex]\(-54\)[/tex] is [tex]\(2\)[/tex]. For the variable part, the GCF is [tex]\(x\)[/tex]. Hence, we factor out [tex]\(2x\)[/tex] from the polynomial:
[tex]\[ 2x(x^4 + 6x^2 - 27) \][/tex]
2. Factor the Quartic Polynomial [tex]\(x^4 + 6x^2 - 27\)[/tex]:
We can think of [tex]\(x^4 + 6x^2 - 27\)[/tex] as a quadratic polynomial in terms of [tex]\(x^2\)[/tex]. Let [tex]\(y = x^2\)[/tex], then the polynomial becomes:
[tex]\[ y^2 + 6y - 27 \][/tex]
3. Factor the Quadratic Polynomial:
We need to find two numbers that multiply to [tex]\(-27\)[/tex] and add up to [tex]\(6\)[/tex]. These numbers are [tex]\(9\)[/tex] and [tex]\(-3\)[/tex]:
[tex]\[ y^2 + 9y - 3y - 27 \][/tex]
Grouping the terms and factoring by grouping:
[tex]\[ y(y + 9) - 3(y + 9) \][/tex]
[tex]\[ (y - 3)(y + 9) \][/tex]
Substituting [tex]\(y = x^2\)[/tex] back into the factored form:
[tex]\[ (x^2 - 3)(x^2 + 9) \][/tex]
4. Combine the Factored Forms:
Multiplying our GCF back into the factored form of the quartic polynomial:
[tex]\[ 2x(x^2 - 3)(x^2 + 9) \][/tex]
Therefore, the completely factored form of the polynomial [tex]\(2x^5 + 12x^3 - 54x\)[/tex] is:
[tex]\[ 2x(x^2 - 3)(x^2 + 9) \][/tex]
After comparing to the given options:
- A. [tex]\(2x(x^2 + 3)(x + 9)(x - 9)\)[/tex]
- B. [tex]\(2x(x - 3)(x + 9)\)[/tex]
- C. [tex]\(2x(x^2 + 3)(x + 3)(x - 3)\)[/tex]
- D. [tex]\(2x(x^2 - 3)(x^2 + 9)\)[/tex]
The correct answer is:
[tex]\[ \boxed{D} \][/tex]
1. Extract the Greatest Common Factor (GCF):
The given polynomial is [tex]\(2x^5 + 12x^3 - 54x\)[/tex].
The GCF of the coefficients [tex]\(2, 12,\)[/tex] and [tex]\(-54\)[/tex] is [tex]\(2\)[/tex]. For the variable part, the GCF is [tex]\(x\)[/tex]. Hence, we factor out [tex]\(2x\)[/tex] from the polynomial:
[tex]\[ 2x(x^4 + 6x^2 - 27) \][/tex]
2. Factor the Quartic Polynomial [tex]\(x^4 + 6x^2 - 27\)[/tex]:
We can think of [tex]\(x^4 + 6x^2 - 27\)[/tex] as a quadratic polynomial in terms of [tex]\(x^2\)[/tex]. Let [tex]\(y = x^2\)[/tex], then the polynomial becomes:
[tex]\[ y^2 + 6y - 27 \][/tex]
3. Factor the Quadratic Polynomial:
We need to find two numbers that multiply to [tex]\(-27\)[/tex] and add up to [tex]\(6\)[/tex]. These numbers are [tex]\(9\)[/tex] and [tex]\(-3\)[/tex]:
[tex]\[ y^2 + 9y - 3y - 27 \][/tex]
Grouping the terms and factoring by grouping:
[tex]\[ y(y + 9) - 3(y + 9) \][/tex]
[tex]\[ (y - 3)(y + 9) \][/tex]
Substituting [tex]\(y = x^2\)[/tex] back into the factored form:
[tex]\[ (x^2 - 3)(x^2 + 9) \][/tex]
4. Combine the Factored Forms:
Multiplying our GCF back into the factored form of the quartic polynomial:
[tex]\[ 2x(x^2 - 3)(x^2 + 9) \][/tex]
Therefore, the completely factored form of the polynomial [tex]\(2x^5 + 12x^3 - 54x\)[/tex] is:
[tex]\[ 2x(x^2 - 3)(x^2 + 9) \][/tex]
After comparing to the given options:
- A. [tex]\(2x(x^2 + 3)(x + 9)(x - 9)\)[/tex]
- B. [tex]\(2x(x - 3)(x + 9)\)[/tex]
- C. [tex]\(2x(x^2 + 3)(x + 3)(x - 3)\)[/tex]
- D. [tex]\(2x(x^2 - 3)(x^2 + 9)\)[/tex]
The correct answer is:
[tex]\[ \boxed{D} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.