Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the equation [tex]\(7^{-x+5} = 13^{-6x}\)[/tex] for [tex]\(x\)[/tex], we will utilize the properties of logarithms. Here's the step-by-step process:
1. Take the Natural Logarithm of Both Sides:
[tex]\[ \ln(7^{-x+5}) = \ln(13^{-6x}) \][/tex]
2. Apply the Power Rule of Logarithms:
The power rule states [tex]\(\ln(a^b) = b \ln(a)\)[/tex]. Therefore, we can rewrite our equation as:
[tex]\[ (-x+5) \ln(7) = (-6x) \ln(13) \][/tex]
3. Expand and Simplify the Equation:
Distribute the logarithms on both sides:
[tex]\[ -x \ln(7) + 5 \ln(7) = -6x \ln(13) \][/tex]
4. Rearrange to Isolate Terms Involving [tex]\(x\)[/tex]:
Bring all the terms involving [tex]\(x\)[/tex] on one side:
[tex]\[ 5 \ln(7) = x \ln(7) - 6x \ln(13) \][/tex]
5. Factor Out [tex]\(x\)[/tex] from the Right Side:
[tex]\[ 5 \ln(7) = x (\ln(7) - 6 \ln(13)) \][/tex]
6. Solve for [tex]\(x\)[/tex]:
Divide both sides by [tex]\((\ln(7) - 6 \ln(13))\)[/tex]:
[tex]\[ x = \frac{5 \ln(7)}{\ln(7) - 6 \ln(13)} \][/tex]
Therefore, the exact value of [tex]\(x\)[/tex] in terms of natural logarithms (base-e) is:
[tex]\[ x = \frac{5 \ln(7)}{\ln(7) - 6 \ln(13)} \][/tex]
After evaluating this expression numerically, [tex]\(x\)[/tex] is approximately:
[tex]\[ x \approx -0.7237210372419273 \][/tex]
To summarize, the exact solution for [tex]\(x\)[/tex] is:
[tex]\[ x = \frac{5 \ln(7)}{\ln(7) - 6 \ln(13)} \][/tex]
1. Take the Natural Logarithm of Both Sides:
[tex]\[ \ln(7^{-x+5}) = \ln(13^{-6x}) \][/tex]
2. Apply the Power Rule of Logarithms:
The power rule states [tex]\(\ln(a^b) = b \ln(a)\)[/tex]. Therefore, we can rewrite our equation as:
[tex]\[ (-x+5) \ln(7) = (-6x) \ln(13) \][/tex]
3. Expand and Simplify the Equation:
Distribute the logarithms on both sides:
[tex]\[ -x \ln(7) + 5 \ln(7) = -6x \ln(13) \][/tex]
4. Rearrange to Isolate Terms Involving [tex]\(x\)[/tex]:
Bring all the terms involving [tex]\(x\)[/tex] on one side:
[tex]\[ 5 \ln(7) = x \ln(7) - 6x \ln(13) \][/tex]
5. Factor Out [tex]\(x\)[/tex] from the Right Side:
[tex]\[ 5 \ln(7) = x (\ln(7) - 6 \ln(13)) \][/tex]
6. Solve for [tex]\(x\)[/tex]:
Divide both sides by [tex]\((\ln(7) - 6 \ln(13))\)[/tex]:
[tex]\[ x = \frac{5 \ln(7)}{\ln(7) - 6 \ln(13)} \][/tex]
Therefore, the exact value of [tex]\(x\)[/tex] in terms of natural logarithms (base-e) is:
[tex]\[ x = \frac{5 \ln(7)}{\ln(7) - 6 \ln(13)} \][/tex]
After evaluating this expression numerically, [tex]\(x\)[/tex] is approximately:
[tex]\[ x \approx -0.7237210372419273 \][/tex]
To summarize, the exact solution for [tex]\(x\)[/tex] is:
[tex]\[ x = \frac{5 \ln(7)}{\ln(7) - 6 \ln(13)} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.