Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the problem step by step.
First, we are given the complex numbers [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in polar form:
[tex]\[ w = \sqrt{2}\left(\cos \left(\frac{\pi}{4}\right) + i \sin \left(\frac{\pi}{4}\right)\right) \][/tex]
[tex]\[ z = 2\left(\cos \left(\frac{\pi}{2}\right) + i \sin \left(\frac{\pi}{2}\right)\right) \][/tex]
To perform the subtraction [tex]\( w - z \)[/tex], we need to convert these numbers to rectangular form.
1. Converting [tex]\( w \)[/tex] to rectangular form:
- Magnitude [tex]\( w_r = \sqrt{2} \)[/tex]
- Angle [tex]\( w_\theta = \frac{\pi}{4} \)[/tex]
Using the rectangular form formula:
[tex]\[ w_{\text{re}} = w_r \cos(w_\theta) = \sqrt{2} \cos\left(\frac{\pi}{4}\right) \][/tex]
[tex]\[ w_{\text{im}} = w_r \sin(w_\theta) = \sqrt{2} \sin\left(\frac{\pi}{4}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \][/tex]
Therefore:
[tex]\[ w_{\text{re}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
[tex]\[ w_{\text{im}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
2. Converting [tex]\( z \)[/tex] to rectangular form:
- Magnitude [tex]\( z_r = 2 \)[/tex]
- Angle [tex]\( z_\theta = \frac{\pi}{2} \)[/tex]
Using the rectangular form formula:
[tex]\[ z_{\text{re}} = z_r \cos(z_\theta) = 2 \cos\left(\frac{\pi}{2}\right) \][/tex]
[tex]\[ z_{\text{im}} = z_r \sin(z_\theta) = 2 \sin\left(\frac{\pi}{2}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{2}\right) = 0 \][/tex]
[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Therefore:
[tex]\[ z_{\text{re}} = 2 \cdot 0 = 0 \][/tex]
[tex]\[ z_{\text{im}} = 2 \cdot 1 = 2 \][/tex]
3. Subtracting [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in rectangular form:
[tex]\[ w - z = (w_{\text{re}} + i w_{\text{im}}) - (z_{\text{re}} + i z_{\text{im}}) \][/tex]
[tex]\[ w - z = (1 + i \cdot 1) - (0 + i \cdot 2) \][/tex]
[tex]\[ w - z = (1 - 0) + i(1 - 2) \][/tex]
[tex]\[ w - z = 1 - i \][/tex]
4. Converting the result back to polar form:
- The magnitude [tex]\( r \)[/tex] is given by:
[tex]\[ r = \sqrt{(\text{Re})^2 + (\text{Im})^2} \][/tex]
[tex]\[ r = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
- The angle [tex]\( \theta \)[/tex] is given by:
[tex]\[ \theta = \tan^{-2}\left(\frac{\text{Im}}{\text{Re}}\right) = \tan^{-1}\left(\frac{-1}{1}\right) = \tan^{-1}(-1) \][/tex]
We know:
[tex]\[ \tan^{-1}(-1) = -\frac{\pi}{4} \][/tex]
To bring the angle within the standard range of [tex]\( [0, 2\pi) \)[/tex], we add [tex]\( 2\pi \)[/tex]:
[tex]\[ \theta = -\frac{\pi}{4} + 2\pi = \frac{7\pi}{4} \][/tex]
So, [tex]\( w - z \)[/tex] expressed in polar form is:
[tex]\[ w - z = \sqrt{2}\left(\cos\left(\frac{7\pi}{4}\right) + i \sin\left(\frac{7\pi}{4}\right)\right) \][/tex]
Therefore, the correct option is:
[tex]\[ \sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right) \][/tex]
First, we are given the complex numbers [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in polar form:
[tex]\[ w = \sqrt{2}\left(\cos \left(\frac{\pi}{4}\right) + i \sin \left(\frac{\pi}{4}\right)\right) \][/tex]
[tex]\[ z = 2\left(\cos \left(\frac{\pi}{2}\right) + i \sin \left(\frac{\pi}{2}\right)\right) \][/tex]
To perform the subtraction [tex]\( w - z \)[/tex], we need to convert these numbers to rectangular form.
1. Converting [tex]\( w \)[/tex] to rectangular form:
- Magnitude [tex]\( w_r = \sqrt{2} \)[/tex]
- Angle [tex]\( w_\theta = \frac{\pi}{4} \)[/tex]
Using the rectangular form formula:
[tex]\[ w_{\text{re}} = w_r \cos(w_\theta) = \sqrt{2} \cos\left(\frac{\pi}{4}\right) \][/tex]
[tex]\[ w_{\text{im}} = w_r \sin(w_\theta) = \sqrt{2} \sin\left(\frac{\pi}{4}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \][/tex]
Therefore:
[tex]\[ w_{\text{re}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
[tex]\[ w_{\text{im}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
2. Converting [tex]\( z \)[/tex] to rectangular form:
- Magnitude [tex]\( z_r = 2 \)[/tex]
- Angle [tex]\( z_\theta = \frac{\pi}{2} \)[/tex]
Using the rectangular form formula:
[tex]\[ z_{\text{re}} = z_r \cos(z_\theta) = 2 \cos\left(\frac{\pi}{2}\right) \][/tex]
[tex]\[ z_{\text{im}} = z_r \sin(z_\theta) = 2 \sin\left(\frac{\pi}{2}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{2}\right) = 0 \][/tex]
[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Therefore:
[tex]\[ z_{\text{re}} = 2 \cdot 0 = 0 \][/tex]
[tex]\[ z_{\text{im}} = 2 \cdot 1 = 2 \][/tex]
3. Subtracting [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in rectangular form:
[tex]\[ w - z = (w_{\text{re}} + i w_{\text{im}}) - (z_{\text{re}} + i z_{\text{im}}) \][/tex]
[tex]\[ w - z = (1 + i \cdot 1) - (0 + i \cdot 2) \][/tex]
[tex]\[ w - z = (1 - 0) + i(1 - 2) \][/tex]
[tex]\[ w - z = 1 - i \][/tex]
4. Converting the result back to polar form:
- The magnitude [tex]\( r \)[/tex] is given by:
[tex]\[ r = \sqrt{(\text{Re})^2 + (\text{Im})^2} \][/tex]
[tex]\[ r = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
- The angle [tex]\( \theta \)[/tex] is given by:
[tex]\[ \theta = \tan^{-2}\left(\frac{\text{Im}}{\text{Re}}\right) = \tan^{-1}\left(\frac{-1}{1}\right) = \tan^{-1}(-1) \][/tex]
We know:
[tex]\[ \tan^{-1}(-1) = -\frac{\pi}{4} \][/tex]
To bring the angle within the standard range of [tex]\( [0, 2\pi) \)[/tex], we add [tex]\( 2\pi \)[/tex]:
[tex]\[ \theta = -\frac{\pi}{4} + 2\pi = \frac{7\pi}{4} \][/tex]
So, [tex]\( w - z \)[/tex] expressed in polar form is:
[tex]\[ w - z = \sqrt{2}\left(\cos\left(\frac{7\pi}{4}\right) + i \sin\left(\frac{7\pi}{4}\right)\right) \][/tex]
Therefore, the correct option is:
[tex]\[ \sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right) \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.