Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the problem step by step.
First, we are given the complex numbers [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in polar form:
[tex]\[ w = \sqrt{2}\left(\cos \left(\frac{\pi}{4}\right) + i \sin \left(\frac{\pi}{4}\right)\right) \][/tex]
[tex]\[ z = 2\left(\cos \left(\frac{\pi}{2}\right) + i \sin \left(\frac{\pi}{2}\right)\right) \][/tex]
To perform the subtraction [tex]\( w - z \)[/tex], we need to convert these numbers to rectangular form.
1. Converting [tex]\( w \)[/tex] to rectangular form:
- Magnitude [tex]\( w_r = \sqrt{2} \)[/tex]
- Angle [tex]\( w_\theta = \frac{\pi}{4} \)[/tex]
Using the rectangular form formula:
[tex]\[ w_{\text{re}} = w_r \cos(w_\theta) = \sqrt{2} \cos\left(\frac{\pi}{4}\right) \][/tex]
[tex]\[ w_{\text{im}} = w_r \sin(w_\theta) = \sqrt{2} \sin\left(\frac{\pi}{4}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \][/tex]
Therefore:
[tex]\[ w_{\text{re}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
[tex]\[ w_{\text{im}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
2. Converting [tex]\( z \)[/tex] to rectangular form:
- Magnitude [tex]\( z_r = 2 \)[/tex]
- Angle [tex]\( z_\theta = \frac{\pi}{2} \)[/tex]
Using the rectangular form formula:
[tex]\[ z_{\text{re}} = z_r \cos(z_\theta) = 2 \cos\left(\frac{\pi}{2}\right) \][/tex]
[tex]\[ z_{\text{im}} = z_r \sin(z_\theta) = 2 \sin\left(\frac{\pi}{2}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{2}\right) = 0 \][/tex]
[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Therefore:
[tex]\[ z_{\text{re}} = 2 \cdot 0 = 0 \][/tex]
[tex]\[ z_{\text{im}} = 2 \cdot 1 = 2 \][/tex]
3. Subtracting [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in rectangular form:
[tex]\[ w - z = (w_{\text{re}} + i w_{\text{im}}) - (z_{\text{re}} + i z_{\text{im}}) \][/tex]
[tex]\[ w - z = (1 + i \cdot 1) - (0 + i \cdot 2) \][/tex]
[tex]\[ w - z = (1 - 0) + i(1 - 2) \][/tex]
[tex]\[ w - z = 1 - i \][/tex]
4. Converting the result back to polar form:
- The magnitude [tex]\( r \)[/tex] is given by:
[tex]\[ r = \sqrt{(\text{Re})^2 + (\text{Im})^2} \][/tex]
[tex]\[ r = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
- The angle [tex]\( \theta \)[/tex] is given by:
[tex]\[ \theta = \tan^{-2}\left(\frac{\text{Im}}{\text{Re}}\right) = \tan^{-1}\left(\frac{-1}{1}\right) = \tan^{-1}(-1) \][/tex]
We know:
[tex]\[ \tan^{-1}(-1) = -\frac{\pi}{4} \][/tex]
To bring the angle within the standard range of [tex]\( [0, 2\pi) \)[/tex], we add [tex]\( 2\pi \)[/tex]:
[tex]\[ \theta = -\frac{\pi}{4} + 2\pi = \frac{7\pi}{4} \][/tex]
So, [tex]\( w - z \)[/tex] expressed in polar form is:
[tex]\[ w - z = \sqrt{2}\left(\cos\left(\frac{7\pi}{4}\right) + i \sin\left(\frac{7\pi}{4}\right)\right) \][/tex]
Therefore, the correct option is:
[tex]\[ \sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right) \][/tex]
First, we are given the complex numbers [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in polar form:
[tex]\[ w = \sqrt{2}\left(\cos \left(\frac{\pi}{4}\right) + i \sin \left(\frac{\pi}{4}\right)\right) \][/tex]
[tex]\[ z = 2\left(\cos \left(\frac{\pi}{2}\right) + i \sin \left(\frac{\pi}{2}\right)\right) \][/tex]
To perform the subtraction [tex]\( w - z \)[/tex], we need to convert these numbers to rectangular form.
1. Converting [tex]\( w \)[/tex] to rectangular form:
- Magnitude [tex]\( w_r = \sqrt{2} \)[/tex]
- Angle [tex]\( w_\theta = \frac{\pi}{4} \)[/tex]
Using the rectangular form formula:
[tex]\[ w_{\text{re}} = w_r \cos(w_\theta) = \sqrt{2} \cos\left(\frac{\pi}{4}\right) \][/tex]
[tex]\[ w_{\text{im}} = w_r \sin(w_\theta) = \sqrt{2} \sin\left(\frac{\pi}{4}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \][/tex]
Therefore:
[tex]\[ w_{\text{re}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
[tex]\[ w_{\text{im}} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \][/tex]
2. Converting [tex]\( z \)[/tex] to rectangular form:
- Magnitude [tex]\( z_r = 2 \)[/tex]
- Angle [tex]\( z_\theta = \frac{\pi}{2} \)[/tex]
Using the rectangular form formula:
[tex]\[ z_{\text{re}} = z_r \cos(z_\theta) = 2 \cos\left(\frac{\pi}{2}\right) \][/tex]
[tex]\[ z_{\text{im}} = z_r \sin(z_\theta) = 2 \sin\left(\frac{\pi}{2}\right) \][/tex]
We know:
[tex]\[ \cos\left(\frac{\pi}{2}\right) = 0 \][/tex]
[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Therefore:
[tex]\[ z_{\text{re}} = 2 \cdot 0 = 0 \][/tex]
[tex]\[ z_{\text{im}} = 2 \cdot 1 = 2 \][/tex]
3. Subtracting [tex]\( w \)[/tex] and [tex]\( z \)[/tex] in rectangular form:
[tex]\[ w - z = (w_{\text{re}} + i w_{\text{im}}) - (z_{\text{re}} + i z_{\text{im}}) \][/tex]
[tex]\[ w - z = (1 + i \cdot 1) - (0 + i \cdot 2) \][/tex]
[tex]\[ w - z = (1 - 0) + i(1 - 2) \][/tex]
[tex]\[ w - z = 1 - i \][/tex]
4. Converting the result back to polar form:
- The magnitude [tex]\( r \)[/tex] is given by:
[tex]\[ r = \sqrt{(\text{Re})^2 + (\text{Im})^2} \][/tex]
[tex]\[ r = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \][/tex]
- The angle [tex]\( \theta \)[/tex] is given by:
[tex]\[ \theta = \tan^{-2}\left(\frac{\text{Im}}{\text{Re}}\right) = \tan^{-1}\left(\frac{-1}{1}\right) = \tan^{-1}(-1) \][/tex]
We know:
[tex]\[ \tan^{-1}(-1) = -\frac{\pi}{4} \][/tex]
To bring the angle within the standard range of [tex]\( [0, 2\pi) \)[/tex], we add [tex]\( 2\pi \)[/tex]:
[tex]\[ \theta = -\frac{\pi}{4} + 2\pi = \frac{7\pi}{4} \][/tex]
So, [tex]\( w - z \)[/tex] expressed in polar form is:
[tex]\[ w - z = \sqrt{2}\left(\cos\left(\frac{7\pi}{4}\right) + i \sin\left(\frac{7\pi}{4}\right)\right) \][/tex]
Therefore, the correct option is:
[tex]\[ \sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right) \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.